Find expert advice and community support for all your questions on IDNLearn.com. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

a) Solve the rational inequality [tex]\frac{2x}{x+1} \leq \frac{1}{2}[/tex].

(5 Marks)

b) If the roots of the equation [tex]-2x^2 + 2x - 7 = 0[/tex] are [tex]\alpha[/tex] and [tex]\beta[/tex], write down an equation whose roots are [tex]\alpha^2[/tex] and [tex]\beta^2[/tex].

(5 Marks)


Sagot :

### Part (a): Solve the Rational Inequality [tex]\(\frac{2x}{x+1} \leq \frac{1/2}\)[/tex]

1. Start by bringing all terms to one side to form a single inequality:
[tex]\[ \frac{2x}{x+1} - \frac{1}{2} \leq 0 \][/tex]

2. Find a common denominator to combine the fractions:
[tex]\[ \frac{4x}{2(x+1)} - \frac{x+1}{2(x+1)} \leq 0 \][/tex]

3. Combine the fractions:
[tex]\[ \frac{4x - (x + 1)}{2(x+1)} \leq 0 \][/tex]
[tex]\[ \frac{4x - x - 1}{2(x+1)} \leq 0 \][/tex]
[tex]\[ \frac{3x - 1}{2(x+1)} \leq 0 \][/tex]

4. Determine where the expression [tex]\(\frac{3x - 1}{2(x+1)}\)[/tex] equals zero or is undefined:
- Numerator [tex]\(3x - 1 = 0 \implies x = \frac{1}{3}\)[/tex]
- Denominator [tex]\(2(x + 1) = 0 \implies x = -1\)[/tex]

5. Identify the intervals for testing:
- Interval 1: [tex]\(x < -1\)[/tex]
- Interval 2: [tex]\(-1 < x < \frac{1}{3}\)[/tex]
- Interval 3: [tex]\(x > \frac{1}{3}\)[/tex]

6. Test these intervals in the inequality:

- For [tex]\(x < -1\)[/tex]:
[tex]\[ \text{Pick } x = -2 \implies \frac{3(-2) - 1}{2(-2 + 1)} = \frac{-6 - 1}{-2} = \frac{-7}{-2} > 0 \quad \text{(True for \(\leq 0\))} \][/tex]
- For [tex]\(-1 < x < \frac{1}{3}\)[/tex]:
[tex]\[ \text{Pick } x = 0 \implies \frac{3(0) - 1}{2(0 + 1)} = \frac{-1}{2} \leq 0 \quad \text{(True for \(\leq 0\))} \][/tex]
- For [tex]\(x > \frac{1}{3}\)[/tex]:
[tex]\[ \text{Pick } x = 1 \implies \frac{3(1) - 1}{2(1+1)} = \frac{2}{2} = 1 \quad \text{(False for \(\leq 0\))} \][/tex]

7. Combine the intervals where the inequality holds:
[tex]\[ x \in (-\infty, -1) \cup \left(-1, \frac{1}{3}\right] \][/tex]

So, the solution to the inequality is:
[tex]\[ x \in (-\infty, -1) \cup \left[-1, \frac{1}{3}\right] \][/tex]

### Part (b): Equation with Roots [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]

1. The roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] of the quadratic equation:
[tex]\[ -2x^2 + 2x - 7 = 0 \][/tex]

2. Solve for [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
[tex]\[ x = \frac{1 \pm \sqrt{15} i}{2} \][/tex]

[tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are:
[tex]\[ \alpha = \frac{1}{2} - \frac{\sqrt{13} i}{2}, \quad \beta = \frac{1}{2} + \frac{\sqrt{13} i}{2} \][/tex]

3. Calculate [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]:
[tex]\[ \alpha^2 = \left(\frac{1}{2} - \frac{\sqrt{13} i}{2}\right)^2 \][/tex]
[tex]\[ \beta^2 = \left(\frac{1}{2} + \frac{\sqrt{13} i}{2}\right)^2 \][/tex]

4. Form the new quadratic equation with the roots [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]:
[tex]\[ (x - \alpha^2)(x - \beta^2) \][/tex]

5. Simplify the polynomial:
[tex]\[ x^2 + (6)x + \frac{49}{4} \][/tex]

So, the equation whose roots are [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex] is:
[tex]\[ x^2 + 6x + \frac{49}{4} = 0 \][/tex]