Find solutions to your problems with the help of IDNLearn.com's expert community. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.
Sagot :
To solve this problem, let's follow a step-by-step approach.
### Step 1: Determine the Forces
1. Total length of the rod [tex]\( L \)[/tex]:
[tex]\[ L = 2 \text{ meters} \][/tex]
2. Masses:
- Mass of the rod [tex]\( m_{\text{rod}} = 4 \text{ kg} \)[/tex]
- Mass of the load [tex]\( m_{\text{load}} = 6 \text{ kg} \)[/tex]
3. Weight Forces
- Weight of the rod [tex]\( W_{\text{rod}} \)[/tex]:
[tex]\[ W_{\text{rod}} = m_{\text{rod}} \times g = 4 \times 9.81 = 39.24 \text{ N} \][/tex]
- Weight of the load [tex]\( W_{\text{load}} \)[/tex]:
[tex]\[ W_{\text{load}} = m_{\text{load}} \times g = 6 \times 9.81 = 58.86 \text{ N} \][/tex]
### Step 2: Equilibrium of Forces
The system is in static equilibrium, so let's use the conditions for both vertical and rotational equilibrium.
#### Vertical Equilibrium
Sum of vertical forces must be zero. Let [tex]\( R_A \)[/tex] be the reaction force at [tex]\( A \)[/tex] and [tex]\( R_B \)[/tex] be the reaction force at [tex]\( B \)[/tex].
Given that [tex]\( R_B = 3 \times R_A \)[/tex], we have:
[tex]\[ R_A + R_B = W_{\text{rod}} + W_{\text{load}} \][/tex]
Substituting [tex]\( R_B = 3R_A \)[/tex]:
[tex]\[ R_A + 3R_A = W_{\text{rod}} + W_{\text{load}} \][/tex]
[tex]\[ 4R_A = W_{\text{rod}} + W_{\text{load}} \][/tex]
[tex]\[ 4R_A = 39.24 + 58.86 = 98.1 \text{ N} \][/tex]
[tex]\[ R_A = \frac{98.1}{4} = 24.525 \text{ N} \][/tex]
Now, calculating [tex]\( R_B \)[/tex]:
[tex]\[ R_B = 3 \times R_A = 3 \times 24.525 = 73.575 \text{ N} \][/tex]
### Step 3: Rotational Equilibrium
For rotational equilibrium around point [tex]\( A \)[/tex], the sum of moments about point [tex]\( A \)[/tex] should be zero.
Taking clockwise moments as positive:
[tex]\[ \sum M_A = 0 \][/tex]
[tex]\[ R_A \cdot 0 + R_B \cdot L - W_{\text{rod}} \cdot \left( \frac{L}{2} \right) - W_{\text{load}} \cdot x = 0 \][/tex]
Since [tex]\( R_A \cdot 0 = 0 \)[/tex], we simplify to:
[tex]\[ R_B \cdot L - W_{\text{rod}} \cdot \left( \frac{L}{2} \right) - W_{\text{load}} \cdot x = 0 \][/tex]
Substitute known values:
[tex]\[ 73.575 \cdot 2 - 39.24 \cdot 1 - 58.86 \cdot x = 0 \][/tex]
[tex]\[ 147.15 - 39.24 - 58.86x = 0 \][/tex]
[tex]\[ 107.91 = 58.86x \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{107.91}{58.86} \approx 1.833 \text{ meters} \][/tex]
### Final Results
- The distance [tex]\( x \)[/tex] at which the mass is placed from [tex]\( A \)[/tex]:
[tex]\[ x \approx 1.833 \text{ meters} \][/tex]
- The reactions at the supports are:
[tex]\[ R_A \approx 24.525 \text{ N} \][/tex]
[tex]\[ R_B \approx 73.575 \text{ N} \][/tex]
Therefore, the distance [tex]\( x \)[/tex] from point [tex]\( A \)[/tex] to the mass is approximately 1.833 meters, the reaction at support [tex]\( A \)[/tex] is approximately 24.525 N, and the reaction at support [tex]\( B \)[/tex] is approximately 73.575 N.
### Step 1: Determine the Forces
1. Total length of the rod [tex]\( L \)[/tex]:
[tex]\[ L = 2 \text{ meters} \][/tex]
2. Masses:
- Mass of the rod [tex]\( m_{\text{rod}} = 4 \text{ kg} \)[/tex]
- Mass of the load [tex]\( m_{\text{load}} = 6 \text{ kg} \)[/tex]
3. Weight Forces
- Weight of the rod [tex]\( W_{\text{rod}} \)[/tex]:
[tex]\[ W_{\text{rod}} = m_{\text{rod}} \times g = 4 \times 9.81 = 39.24 \text{ N} \][/tex]
- Weight of the load [tex]\( W_{\text{load}} \)[/tex]:
[tex]\[ W_{\text{load}} = m_{\text{load}} \times g = 6 \times 9.81 = 58.86 \text{ N} \][/tex]
### Step 2: Equilibrium of Forces
The system is in static equilibrium, so let's use the conditions for both vertical and rotational equilibrium.
#### Vertical Equilibrium
Sum of vertical forces must be zero. Let [tex]\( R_A \)[/tex] be the reaction force at [tex]\( A \)[/tex] and [tex]\( R_B \)[/tex] be the reaction force at [tex]\( B \)[/tex].
Given that [tex]\( R_B = 3 \times R_A \)[/tex], we have:
[tex]\[ R_A + R_B = W_{\text{rod}} + W_{\text{load}} \][/tex]
Substituting [tex]\( R_B = 3R_A \)[/tex]:
[tex]\[ R_A + 3R_A = W_{\text{rod}} + W_{\text{load}} \][/tex]
[tex]\[ 4R_A = W_{\text{rod}} + W_{\text{load}} \][/tex]
[tex]\[ 4R_A = 39.24 + 58.86 = 98.1 \text{ N} \][/tex]
[tex]\[ R_A = \frac{98.1}{4} = 24.525 \text{ N} \][/tex]
Now, calculating [tex]\( R_B \)[/tex]:
[tex]\[ R_B = 3 \times R_A = 3 \times 24.525 = 73.575 \text{ N} \][/tex]
### Step 3: Rotational Equilibrium
For rotational equilibrium around point [tex]\( A \)[/tex], the sum of moments about point [tex]\( A \)[/tex] should be zero.
Taking clockwise moments as positive:
[tex]\[ \sum M_A = 0 \][/tex]
[tex]\[ R_A \cdot 0 + R_B \cdot L - W_{\text{rod}} \cdot \left( \frac{L}{2} \right) - W_{\text{load}} \cdot x = 0 \][/tex]
Since [tex]\( R_A \cdot 0 = 0 \)[/tex], we simplify to:
[tex]\[ R_B \cdot L - W_{\text{rod}} \cdot \left( \frac{L}{2} \right) - W_{\text{load}} \cdot x = 0 \][/tex]
Substitute known values:
[tex]\[ 73.575 \cdot 2 - 39.24 \cdot 1 - 58.86 \cdot x = 0 \][/tex]
[tex]\[ 147.15 - 39.24 - 58.86x = 0 \][/tex]
[tex]\[ 107.91 = 58.86x \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{107.91}{58.86} \approx 1.833 \text{ meters} \][/tex]
### Final Results
- The distance [tex]\( x \)[/tex] at which the mass is placed from [tex]\( A \)[/tex]:
[tex]\[ x \approx 1.833 \text{ meters} \][/tex]
- The reactions at the supports are:
[tex]\[ R_A \approx 24.525 \text{ N} \][/tex]
[tex]\[ R_B \approx 73.575 \text{ N} \][/tex]
Therefore, the distance [tex]\( x \)[/tex] from point [tex]\( A \)[/tex] to the mass is approximately 1.833 meters, the reaction at support [tex]\( A \)[/tex] is approximately 24.525 N, and the reaction at support [tex]\( B \)[/tex] is approximately 73.575 N.
We are happy to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.