IDNLearn.com provides a seamless experience for finding and sharing answers. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
Sure, let's analyze the function [tex]\( f(x) = \frac{1}{3} x^4 - 5 x^2 + 12 \)[/tex] step-by-step.
### Critical Points
1. Find the first derivative [tex]\( f'(x)\)[/tex] to locate the critical points:
[tex]\[ f'(x) = \frac{d}{dx} \left( \frac{1}{3} x^4 - 5 x^2 + 12 \right) \][/tex]
[tex]\[ f'(x) = \frac{4}{3} x^3 - 10x \][/tex]
2. Set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{4}{3} x^3 - 10x = 0 \][/tex]
Factor out the common term:
[tex]\[ x \left( \frac{4}{3} x^2 - 10 \right) = 0 \][/tex]
This gives us two equations to solve:
[tex]\[ x = 0 \][/tex]
[tex]\[ \frac{4}{3} x^2 = 10 \][/tex]
Solving the second equation:
[tex]\[ x^2 = \frac{30}{4} = 7.5 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm \sqrt{7.5} \][/tex]
Approximating the square root:
[tex]\[ x \approx \pm 2.7386 \][/tex]
So, the critical points are:
[tex]\[ x = -2.7386, \; 0, \; 2.7386 \][/tex]
### Concavity at Critical Points
1. Find the second derivative [tex]\( f''(x)\)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4}{3} x^3 - 10x \right) \][/tex]
[tex]\[ f''(x) = 4x^2 - 10 \][/tex]
2. Evaluate the second derivative at each critical point to determine concavity:
- At [tex]\( x = -2.7386 \)[/tex]:
[tex]\[ f''(-2.7386) = 4(-2.7386)^2 - 10 \approx 20 \][/tex]
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f''(0) = 4(0)^2 - 10 = -10 \][/tex]
- At [tex]\( x = 2.7386 \)[/tex]:
[tex]\[ f''(2.7386) = 4(2.7386)^2 - 10 \approx 20 \][/tex]
Interpretation of concavity:
- [tex]\( f(x) \)[/tex] is concave up (minimum) at [tex]\( x = -2.7386 \)[/tex] and [tex]\( x = 2.7386 \)[/tex] because [tex]\( f''(x) > 0 \)[/tex].
- [tex]\( f(x) \)[/tex] is concave down (maximum) at [tex]\( x = 0 \)[/tex] because [tex]\( f''(x) < 0 \)[/tex].
### Points of Inflection
1. Set the second derivative equal to zero to find points of inflection:
[tex]\[ f''(x) = 4x^2 - 10 = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ 4x^2 = 10 \][/tex]
[tex]\[ x^2 = 2.5 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm \sqrt{2.5} \][/tex]
Approximate the square root:
[tex]\[ x \approx \pm 1.5811 \][/tex]
2. Determine the corresponding [tex]\( y \)[/tex]-values for the inflection points by substituting [tex]\( x \)[/tex] back into [tex]\( f(x) \)[/tex]:
- For [tex]\( x = 1.5811 \)[/tex]:
[tex]\[ f(1.5811) \approx \frac{1}{3} (1.5811)^4 - 5 (1.5811)^2 + 12 \approx 1.5833 \][/tex]
- For [tex]\( x = -1.5811 \)[/tex]:
[tex]\[ f(-1.5811) \approx \frac{1}{3} (-1.5811)^4 - 5 (-1.5811)^2 + 12 \approx 1.5833 \][/tex]
The points of inflection are:
[tex]\[ (-1.5811, 1.5833) \quad \text{and} \quad (1.5811, 1.5833) \][/tex]
### Summary
- Critical points: [tex]\(-2.7386, 0, 2.7386\)[/tex]
- Concavity at critical points:
- [tex]\( x = -2.7386 \)[/tex]: Concave up (Minimum)
- [tex]\( x = 0 \)[/tex]: Concave down (Maximum)
- [tex]\( x = 2.7386 \)[/tex]: Concave up (Minimum)
- Inflection points and their values:
- [tex]\((-1.5811, 1.5833)\)[/tex]
- [tex]\((1.5811, 1.5833)\)[/tex]
### Critical Points
1. Find the first derivative [tex]\( f'(x)\)[/tex] to locate the critical points:
[tex]\[ f'(x) = \frac{d}{dx} \left( \frac{1}{3} x^4 - 5 x^2 + 12 \right) \][/tex]
[tex]\[ f'(x) = \frac{4}{3} x^3 - 10x \][/tex]
2. Set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{4}{3} x^3 - 10x = 0 \][/tex]
Factor out the common term:
[tex]\[ x \left( \frac{4}{3} x^2 - 10 \right) = 0 \][/tex]
This gives us two equations to solve:
[tex]\[ x = 0 \][/tex]
[tex]\[ \frac{4}{3} x^2 = 10 \][/tex]
Solving the second equation:
[tex]\[ x^2 = \frac{30}{4} = 7.5 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm \sqrt{7.5} \][/tex]
Approximating the square root:
[tex]\[ x \approx \pm 2.7386 \][/tex]
So, the critical points are:
[tex]\[ x = -2.7386, \; 0, \; 2.7386 \][/tex]
### Concavity at Critical Points
1. Find the second derivative [tex]\( f''(x)\)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4}{3} x^3 - 10x \right) \][/tex]
[tex]\[ f''(x) = 4x^2 - 10 \][/tex]
2. Evaluate the second derivative at each critical point to determine concavity:
- At [tex]\( x = -2.7386 \)[/tex]:
[tex]\[ f''(-2.7386) = 4(-2.7386)^2 - 10 \approx 20 \][/tex]
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f''(0) = 4(0)^2 - 10 = -10 \][/tex]
- At [tex]\( x = 2.7386 \)[/tex]:
[tex]\[ f''(2.7386) = 4(2.7386)^2 - 10 \approx 20 \][/tex]
Interpretation of concavity:
- [tex]\( f(x) \)[/tex] is concave up (minimum) at [tex]\( x = -2.7386 \)[/tex] and [tex]\( x = 2.7386 \)[/tex] because [tex]\( f''(x) > 0 \)[/tex].
- [tex]\( f(x) \)[/tex] is concave down (maximum) at [tex]\( x = 0 \)[/tex] because [tex]\( f''(x) < 0 \)[/tex].
### Points of Inflection
1. Set the second derivative equal to zero to find points of inflection:
[tex]\[ f''(x) = 4x^2 - 10 = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ 4x^2 = 10 \][/tex]
[tex]\[ x^2 = 2.5 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm \sqrt{2.5} \][/tex]
Approximate the square root:
[tex]\[ x \approx \pm 1.5811 \][/tex]
2. Determine the corresponding [tex]\( y \)[/tex]-values for the inflection points by substituting [tex]\( x \)[/tex] back into [tex]\( f(x) \)[/tex]:
- For [tex]\( x = 1.5811 \)[/tex]:
[tex]\[ f(1.5811) \approx \frac{1}{3} (1.5811)^4 - 5 (1.5811)^2 + 12 \approx 1.5833 \][/tex]
- For [tex]\( x = -1.5811 \)[/tex]:
[tex]\[ f(-1.5811) \approx \frac{1}{3} (-1.5811)^4 - 5 (-1.5811)^2 + 12 \approx 1.5833 \][/tex]
The points of inflection are:
[tex]\[ (-1.5811, 1.5833) \quad \text{and} \quad (1.5811, 1.5833) \][/tex]
### Summary
- Critical points: [tex]\(-2.7386, 0, 2.7386\)[/tex]
- Concavity at critical points:
- [tex]\( x = -2.7386 \)[/tex]: Concave up (Minimum)
- [tex]\( x = 0 \)[/tex]: Concave down (Maximum)
- [tex]\( x = 2.7386 \)[/tex]: Concave up (Minimum)
- Inflection points and their values:
- [tex]\((-1.5811, 1.5833)\)[/tex]
- [tex]\((1.5811, 1.5833)\)[/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.