IDNLearn.com is your reliable source for expert answers and community insights. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To find the solution to the system of linear equations using Cramer's Rule, we need to follow these steps:
The given system of equations is:
[tex]\[ \begin{array}{l} -5x + 2y - 2z = 26 \\ 3x + 5y + z = -22 \\ -3x - 5y - 2z = 21 \end{array} \][/tex]
Step 1: Write the system of equations in matrix form [tex]\(AX = B\)[/tex].
Here,
[tex]\[ A = \begin{pmatrix} -5 & 2 & -2 \\ 3 & 5 & 1 \\ -3 & -5 & -2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 26 \\ -22 \\ 21 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of matrix [tex]\(A\)[/tex] ([tex]\(\det(A)\)[/tex]).
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \det(A) = 31.0 \][/tex]
Since [tex]\(\det(A) \neq 0\)[/tex], we know that a unique solution exists.
Step 3: Calculate the determinants of matrices formed by replacing each column of [tex]\(A\)[/tex] with vector [tex]\(B\)[/tex].
1. For [tex]\(A_1\)[/tex] (Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]):
[tex]\[ A_1 = \begin{pmatrix} 26 & 2 & -2 \\ -22 & 5 & 1 \\ 21 & -5 & -2 \end{pmatrix} \][/tex]
The determinant of [tex]\(A_1\)[/tex] is:
[tex]\[ \det(A_1) = -186.0 \][/tex]
2. For [tex]\(A_2\)[/tex] (Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]):
[tex]\[ A_2 = \begin{pmatrix} -5 & 26 & -2 \\ 3 & -22 & 1 \\ -3 & 21 & -2 \end{pmatrix} \][/tex]
The determinant of [tex]\(A_2\)[/tex] is:
[tex]\[ \det(A_2) = -31.0 \][/tex]
3. For [tex]\(A_3\)[/tex] (Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]):
[tex]\[ A_3 = \begin{pmatrix} -5 & 2 & 26 \\ 3 & 5 & -22 \\ -3 & -5 & 21 \end{pmatrix} \][/tex]
The determinant of [tex]\(A_3\)[/tex] is:
[tex]\[ \det(A_3) = 31.0 \][/tex]
Step 4: Use Cramer's Rule to solve for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].
[tex]\[ x = \frac{\det(A_1)}{\det(A)} = \frac{-186.0}{31.0} = -6.0 \][/tex]
[tex]\[ y = \frac{\det(A_2)}{\det(A)} = \frac{-31.0}{31.0} = -1.0 \][/tex]
[tex]\[ z = \frac{\det(A_3)}{\det(A)} = \frac{31.0}{31.0} = 1.0 \][/tex]
Thus, the unique solution to the system of equations is:
[tex]\[ (x, y, z) = (-6, -1, 1) \][/tex]
The given system of equations is:
[tex]\[ \begin{array}{l} -5x + 2y - 2z = 26 \\ 3x + 5y + z = -22 \\ -3x - 5y - 2z = 21 \end{array} \][/tex]
Step 1: Write the system of equations in matrix form [tex]\(AX = B\)[/tex].
Here,
[tex]\[ A = \begin{pmatrix} -5 & 2 & -2 \\ 3 & 5 & 1 \\ -3 & -5 & -2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 26 \\ -22 \\ 21 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of matrix [tex]\(A\)[/tex] ([tex]\(\det(A)\)[/tex]).
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \det(A) = 31.0 \][/tex]
Since [tex]\(\det(A) \neq 0\)[/tex], we know that a unique solution exists.
Step 3: Calculate the determinants of matrices formed by replacing each column of [tex]\(A\)[/tex] with vector [tex]\(B\)[/tex].
1. For [tex]\(A_1\)[/tex] (Replace the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]):
[tex]\[ A_1 = \begin{pmatrix} 26 & 2 & -2 \\ -22 & 5 & 1 \\ 21 & -5 & -2 \end{pmatrix} \][/tex]
The determinant of [tex]\(A_1\)[/tex] is:
[tex]\[ \det(A_1) = -186.0 \][/tex]
2. For [tex]\(A_2\)[/tex] (Replace the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]):
[tex]\[ A_2 = \begin{pmatrix} -5 & 26 & -2 \\ 3 & -22 & 1 \\ -3 & 21 & -2 \end{pmatrix} \][/tex]
The determinant of [tex]\(A_2\)[/tex] is:
[tex]\[ \det(A_2) = -31.0 \][/tex]
3. For [tex]\(A_3\)[/tex] (Replace the third column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex]):
[tex]\[ A_3 = \begin{pmatrix} -5 & 2 & 26 \\ 3 & 5 & -22 \\ -3 & -5 & 21 \end{pmatrix} \][/tex]
The determinant of [tex]\(A_3\)[/tex] is:
[tex]\[ \det(A_3) = 31.0 \][/tex]
Step 4: Use Cramer's Rule to solve for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].
[tex]\[ x = \frac{\det(A_1)}{\det(A)} = \frac{-186.0}{31.0} = -6.0 \][/tex]
[tex]\[ y = \frac{\det(A_2)}{\det(A)} = \frac{-31.0}{31.0} = -1.0 \][/tex]
[tex]\[ z = \frac{\det(A_3)}{\det(A)} = \frac{31.0}{31.0} = 1.0 \][/tex]
Thus, the unique solution to the system of equations is:
[tex]\[ (x, y, z) = (-6, -1, 1) \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.