Connect with a community of experts and enthusiasts on IDNLearn.com. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
Sure! Let's find the simplest form of the expression [tex]\(2m - n\)[/tex] given the definitions of [tex]\(m\)[/tex] and [tex]\(n\)[/tex].
First, let's rewrite [tex]\(m\)[/tex] and [tex]\(n\)[/tex] using their given expressions:
[tex]\[ m = \frac{2x}{1 - x^2} \][/tex]
[tex]\[ n = \frac{2x}{1 + x} \][/tex]
Now, we need to compute [tex]\(2m - n\)[/tex]:
[tex]\[ 2m - n = 2 \left( \frac{2x}{1 - x^2} \right) - \frac{2x}{1 + x} \][/tex]
Calculate [tex]\(2m\)[/tex]:
[tex]\[ 2m = 2 \left( \frac{2x}{1 - x^2} \right) = \frac{4x}{1 - x^2} \][/tex]
Now substitute [tex]\(2m\)[/tex] and [tex]\(n\)[/tex] back into the expression:
[tex]\[ 2m - n = \frac{4x}{1 - x^2} - \frac{2x}{1 + x} \][/tex]
To combine these fractions, we need a common denominator. The common denominator for [tex]\(\frac{4x}{1 - x^2}\)[/tex] and [tex]\(\frac{2x}{1 + x}\)[/tex] is [tex]\((1 - x^2)(1 + x)\)[/tex].
First, notice that:
[tex]\[ 1 - x^2 = (1 - x)(1 + x) \][/tex]
Thus we can rewrite:
[tex]\[ \frac{4x}{1 - x^2} = \frac{4x}{(1 - x)(1 + x)} \][/tex]
To convert this to a common denominator, we'll use [tex]\((1 - x)(1 + x)\)[/tex] for both terms:
[tex]\[ \frac{4x}{(1 - x)(1 + x)} - \frac{2x}{1 + x} \cdot \frac{1 - x}{1 - x} \][/tex]
This simplifies to:
[tex]\[ \frac{4x}{(1 - x)(1 + x)} - \frac{2x(1 - x)}{(1 - x)(1 + x)} \][/tex]
Combine the two fractions:
[tex]\[ \frac{4x - 2x(1 - x)}{(1 - x)(1 + x)} \][/tex]
Expand the numerator:
[tex]\[ 4x - 2x + 2x^2 = 2x + 2x^2 \][/tex]
Combine like terms:
[tex]\[ \frac{2x + 2x^2}{(1 - x)(1 + x)} \][/tex]
We can factor out a 2x from the numerator:
[tex]\[ \frac{2x(1 + x)}{(1 - x)(1 + x)} \][/tex]
Now notice that [tex]\((1 + x)\)[/tex] cancels out in the numerator and denominator:
[tex]\[ \frac{2x \cancel{(1 + x)}}{(1 - x)\cancel{(1 + x)}} = \frac{2x}{1 - x} \][/tex]
So, the simplest form of [tex]\(2m - n\)[/tex] is:
[tex]\[ 2m - n = \frac{2x}{1 - x} \][/tex]
However, due to a negative sign simplification, the correct answer in simplest form is:
[tex]\[ 2m - n = -\frac{2x}{x - 1} \][/tex]
First, let's rewrite [tex]\(m\)[/tex] and [tex]\(n\)[/tex] using their given expressions:
[tex]\[ m = \frac{2x}{1 - x^2} \][/tex]
[tex]\[ n = \frac{2x}{1 + x} \][/tex]
Now, we need to compute [tex]\(2m - n\)[/tex]:
[tex]\[ 2m - n = 2 \left( \frac{2x}{1 - x^2} \right) - \frac{2x}{1 + x} \][/tex]
Calculate [tex]\(2m\)[/tex]:
[tex]\[ 2m = 2 \left( \frac{2x}{1 - x^2} \right) = \frac{4x}{1 - x^2} \][/tex]
Now substitute [tex]\(2m\)[/tex] and [tex]\(n\)[/tex] back into the expression:
[tex]\[ 2m - n = \frac{4x}{1 - x^2} - \frac{2x}{1 + x} \][/tex]
To combine these fractions, we need a common denominator. The common denominator for [tex]\(\frac{4x}{1 - x^2}\)[/tex] and [tex]\(\frac{2x}{1 + x}\)[/tex] is [tex]\((1 - x^2)(1 + x)\)[/tex].
First, notice that:
[tex]\[ 1 - x^2 = (1 - x)(1 + x) \][/tex]
Thus we can rewrite:
[tex]\[ \frac{4x}{1 - x^2} = \frac{4x}{(1 - x)(1 + x)} \][/tex]
To convert this to a common denominator, we'll use [tex]\((1 - x)(1 + x)\)[/tex] for both terms:
[tex]\[ \frac{4x}{(1 - x)(1 + x)} - \frac{2x}{1 + x} \cdot \frac{1 - x}{1 - x} \][/tex]
This simplifies to:
[tex]\[ \frac{4x}{(1 - x)(1 + x)} - \frac{2x(1 - x)}{(1 - x)(1 + x)} \][/tex]
Combine the two fractions:
[tex]\[ \frac{4x - 2x(1 - x)}{(1 - x)(1 + x)} \][/tex]
Expand the numerator:
[tex]\[ 4x - 2x + 2x^2 = 2x + 2x^2 \][/tex]
Combine like terms:
[tex]\[ \frac{2x + 2x^2}{(1 - x)(1 + x)} \][/tex]
We can factor out a 2x from the numerator:
[tex]\[ \frac{2x(1 + x)}{(1 - x)(1 + x)} \][/tex]
Now notice that [tex]\((1 + x)\)[/tex] cancels out in the numerator and denominator:
[tex]\[ \frac{2x \cancel{(1 + x)}}{(1 - x)\cancel{(1 + x)}} = \frac{2x}{1 - x} \][/tex]
So, the simplest form of [tex]\(2m - n\)[/tex] is:
[tex]\[ 2m - n = \frac{2x}{1 - x} \][/tex]
However, due to a negative sign simplification, the correct answer in simplest form is:
[tex]\[ 2m - n = -\frac{2x}{x - 1} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.