Get comprehensive answers to your questions with the help of IDNLearn.com's community. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
To solve this problem, let's break it down into the steps required for parts (a) and (b).
### Part (a): Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]
We need a formula that describes how the amount [tex]\( y \)[/tex] of the radioactive substance decays over time [tex]\( t \)[/tex]. Exponential decay can be modeled using the equation:
[tex]\[ y = y_0 \cdot e^{-kt} \][/tex]
Where:
- [tex]\( y_0 \)[/tex] is the initial amount of the substance,
- [tex]\( k \)[/tex] is the decay constant,
- [tex]\( t \)[/tex] is the time,
- [tex]\( y \)[/tex] is the amount remaining at time [tex]\( t \)[/tex].
Given:
- The initial amount [tex]\( y_0 = 938.9 \)[/tex] grams
- The half-life of the substance is 19 days
First, we need to find the decay constant [tex]\( k \)[/tex]. The decay constant is linked to the half-life via the formula:
[tex]\[ k = \frac{\ln(2)}{\text{half-life}} \][/tex]
Substitute the half-life into the equation:
[tex]\[ k = \frac{\ln(2)}{19} \][/tex]
Hence, the decay constant [tex]\( k \)[/tex] is:
[tex]\[ k = \frac{\ln(2)}{19} \approx 0.03648143055578659 \][/tex]
Now we can write the complete formula:
[tex]\[ y = 938.9 \cdot e^{-kt} \][/tex]
Substituting [tex]\( k \)[/tex]:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
So the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
### Part (b): Amount present in 13 days
We need to find the amount of the substance remaining after 13 days. Using the formula:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
Substitute [tex]\( t = 13 \)[/tex] days:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right) \cdot 13} \][/tex]
First, calculate the exponent part:
[tex]\[ -\left(\frac{\ln(2)}{19}\right) \cdot 13 \approx -0.03648143055578659 \cdot 13 \approx -0.4742585972312266 \][/tex]
Now, compute the amount [tex]\( y \)[/tex]:
[tex]\[ y = 938.9 \cdot e^{-0.4742585972312266} \][/tex]
[tex]\[ y \approx 938.9 \cdot 0.6223 \approx 584.3 \][/tex]
So, the amount remaining after 13 days is approximately 584.3 grams, rounded to the nearest tenth.
Thus, the answers are:
(a) The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
(b) The amount present after 13 days is:
[tex]\[ 584.3 \][/tex] grams.
### Part (a): Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]
We need a formula that describes how the amount [tex]\( y \)[/tex] of the radioactive substance decays over time [tex]\( t \)[/tex]. Exponential decay can be modeled using the equation:
[tex]\[ y = y_0 \cdot e^{-kt} \][/tex]
Where:
- [tex]\( y_0 \)[/tex] is the initial amount of the substance,
- [tex]\( k \)[/tex] is the decay constant,
- [tex]\( t \)[/tex] is the time,
- [tex]\( y \)[/tex] is the amount remaining at time [tex]\( t \)[/tex].
Given:
- The initial amount [tex]\( y_0 = 938.9 \)[/tex] grams
- The half-life of the substance is 19 days
First, we need to find the decay constant [tex]\( k \)[/tex]. The decay constant is linked to the half-life via the formula:
[tex]\[ k = \frac{\ln(2)}{\text{half-life}} \][/tex]
Substitute the half-life into the equation:
[tex]\[ k = \frac{\ln(2)}{19} \][/tex]
Hence, the decay constant [tex]\( k \)[/tex] is:
[tex]\[ k = \frac{\ln(2)}{19} \approx 0.03648143055578659 \][/tex]
Now we can write the complete formula:
[tex]\[ y = 938.9 \cdot e^{-kt} \][/tex]
Substituting [tex]\( k \)[/tex]:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
So the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
### Part (b): Amount present in 13 days
We need to find the amount of the substance remaining after 13 days. Using the formula:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
Substitute [tex]\( t = 13 \)[/tex] days:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right) \cdot 13} \][/tex]
First, calculate the exponent part:
[tex]\[ -\left(\frac{\ln(2)}{19}\right) \cdot 13 \approx -0.03648143055578659 \cdot 13 \approx -0.4742585972312266 \][/tex]
Now, compute the amount [tex]\( y \)[/tex]:
[tex]\[ y = 938.9 \cdot e^{-0.4742585972312266} \][/tex]
[tex]\[ y \approx 938.9 \cdot 0.6223 \approx 584.3 \][/tex]
So, the amount remaining after 13 days is approximately 584.3 grams, rounded to the nearest tenth.
Thus, the answers are:
(a) The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 938.9 \cdot e^{-\left(\frac{\ln(2)}{19}\right)t} \][/tex]
(b) The amount present after 13 days is:
[tex]\[ 584.3 \][/tex] grams.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.