Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
To solve the problem of fish population growth using a continuous exponential growth model, we'll follow these steps:
### Part (a)
Given:
- Initial population ([tex]\(y_0\)[/tex]) = 10 fish
- Population after 11 years ([tex]\(y(11)\)[/tex]) = 28 fish
- Time ([tex]\(t\)[/tex]) = 11 years
We know that the exponential growth formula is:
[tex]\[ y = y_0 \cdot e^{kt} \][/tex]
First, we need to determine the growth rate [tex]\(k\)[/tex], so we start by setting up the equation using the given information:
[tex]\[ 28 = 10 \cdot e^{11k} \][/tex]
To isolate [tex]\(e^{11k}\)[/tex], divide both sides by 10:
[tex]\[ \frac{28}{10} = e^{11k} \][/tex]
[tex]\[ 2.8 = e^{11k} \][/tex]
Next, take the natural logarithm of both sides to solve for [tex]\(k\)[/tex]:
[tex]\[ \ln(2.8) = 11k \][/tex]
[tex]\[ k = \frac{\ln(2.8)}{11} \][/tex]
Thus, the growth rate [tex]\(k\)[/tex] is:
[tex]\[ k = \frac{\ln(2.8)}{11} \][/tex]
Now plug this value back into the exponential growth formula:
[tex]\[ y = 10 \cdot e^{\left(\frac{\ln(2.8)}{11}\right)t} \][/tex]
So, the formula relating [tex]\(y\)[/tex] to [tex]\(t\)[/tex] is:
[tex]\[ y = 10 \cdot e^{\left(\frac{\ln(2.8)}{11}\right)t} \][/tex]
### Part (b)
To find the number of fish after 14 years, we use the formula we obtained in part (a) and set [tex]\(t = 14\)[/tex]:
[tex]\[ y(14) = 10 \cdot e^{\left(\frac{\ln(2.8)}{11}\right) \cdot 14} \][/tex]
Using the value for [tex]\(k\)[/tex] which is approximately 0.0936017651982871, we get:
[tex]\[ y(14) = 10 \cdot e^{0.0936017651982871 \cdot 14} \][/tex]
[tex]\[ y(14) = 10 \cdot e^{1.310424712776} \][/tex]
Which results approximately to:
[tex]\[ y(14) \approx 37 \][/tex]
So, the number of fish after 14 years is:
[tex]\[ 37 \text{ fish} \][/tex]
### Part (a)
Given:
- Initial population ([tex]\(y_0\)[/tex]) = 10 fish
- Population after 11 years ([tex]\(y(11)\)[/tex]) = 28 fish
- Time ([tex]\(t\)[/tex]) = 11 years
We know that the exponential growth formula is:
[tex]\[ y = y_0 \cdot e^{kt} \][/tex]
First, we need to determine the growth rate [tex]\(k\)[/tex], so we start by setting up the equation using the given information:
[tex]\[ 28 = 10 \cdot e^{11k} \][/tex]
To isolate [tex]\(e^{11k}\)[/tex], divide both sides by 10:
[tex]\[ \frac{28}{10} = e^{11k} \][/tex]
[tex]\[ 2.8 = e^{11k} \][/tex]
Next, take the natural logarithm of both sides to solve for [tex]\(k\)[/tex]:
[tex]\[ \ln(2.8) = 11k \][/tex]
[tex]\[ k = \frac{\ln(2.8)}{11} \][/tex]
Thus, the growth rate [tex]\(k\)[/tex] is:
[tex]\[ k = \frac{\ln(2.8)}{11} \][/tex]
Now plug this value back into the exponential growth formula:
[tex]\[ y = 10 \cdot e^{\left(\frac{\ln(2.8)}{11}\right)t} \][/tex]
So, the formula relating [tex]\(y\)[/tex] to [tex]\(t\)[/tex] is:
[tex]\[ y = 10 \cdot e^{\left(\frac{\ln(2.8)}{11}\right)t} \][/tex]
### Part (b)
To find the number of fish after 14 years, we use the formula we obtained in part (a) and set [tex]\(t = 14\)[/tex]:
[tex]\[ y(14) = 10 \cdot e^{\left(\frac{\ln(2.8)}{11}\right) \cdot 14} \][/tex]
Using the value for [tex]\(k\)[/tex] which is approximately 0.0936017651982871, we get:
[tex]\[ y(14) = 10 \cdot e^{0.0936017651982871 \cdot 14} \][/tex]
[tex]\[ y(14) = 10 \cdot e^{1.310424712776} \][/tex]
Which results approximately to:
[tex]\[ y(14) \approx 37 \][/tex]
So, the number of fish after 14 years is:
[tex]\[ 37 \text{ fish} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.