IDNLearn.com: Your go-to resource for finding precise and accurate answers. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Let's tackle each part of this question one by one.
### Part (a): Finding the Functional Form of the Acceleration
The given velocity [tex]\( v(t) \)[/tex] is a function of time [tex]\( t \)[/tex]:
[tex]\[ v(t) = 20t - 5t^2 \][/tex]
Acceleration [tex]\( a(t) \)[/tex] is the derivative of velocity with respect to time:
[tex]\[ a(t) = \frac{dv(t)}{dt} \][/tex]
Differentiating [tex]\( v(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ a(t) = \frac{d(20t - 5t^2)}{dt} \][/tex]
[tex]\[ a(t) = 20 - 10t \][/tex]
So, the functional form of the acceleration is:
[tex]\[ a(t) = 20 - 10t \][/tex]
### Part (b): Finding the Instantaneous Velocity at [tex]\( t = 1, 2, 3, \)[/tex] and [tex]\( 5 \)[/tex] Seconds
To find the instantaneous velocities, we need to substitute the given time values into the velocity function [tex]\( v(t) \)[/tex].
1. For [tex]\( t = 1 \)[/tex] second:
[tex]\[ v(1) = 20 \cdot 1 - 5 \cdot 1^2 \][/tex]
[tex]\[ v(1) = 20 - 5 \][/tex]
[tex]\[ v(1) = 15 \, \text{m/s} \][/tex]
2. For [tex]\( t = 2 \)[/tex] seconds:
[tex]\[ v(2) = 20 \cdot 2 - 5 \cdot 2^2 \][/tex]
[tex]\[ v(2) = 40 - 20 \][/tex]
[tex]\[ v(2) = 20 \, \text{m/s} \][/tex]
3. For [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ v(3) = 20 \cdot 3 - 5 \cdot 3^2 \][/tex]
[tex]\[ v(3) = 60 - 45 \][/tex]
[tex]\[ v(3) = 15 \, \text{m/s} \][/tex]
4. For [tex]\( t = 5 \)[/tex] seconds:
[tex]\[ v(5) = 20 \cdot 5 - 5 \cdot 5^2 \][/tex]
[tex]\[ v(5) = 100 - 125 \][/tex]
[tex]\[ v(5) = -25 \, \text{m/s} \][/tex]
### Part (c): Finding the Instantaneous Acceleration at [tex]\( t = 1, 2, 3, \)[/tex] and [tex]\( 5 \)[/tex] Seconds
To find the instantaneous accelerations, we need to substitute the given time values into the acceleration function [tex]\( a(t) \)[/tex].
1. For [tex]\( t = 1 \)[/tex] second:
[tex]\[ a(1) = 20 - 10 \cdot 1 \][/tex]
[tex]\[ a(1) = 20 - 10 \][/tex]
[tex]\[ a(1) = 10 \, \text{m/s}^2 \][/tex]
2. For [tex]\( t = 2 \)[/tex] seconds:
[tex]\[ a(2) = 20 - 10 \cdot 2 \][/tex]
[tex]\[ a(2) = 20 - 20 \][/tex]
[tex]\[ a(2) = 0 \, \text{m/s}^2 \][/tex]
3. For [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ a(3) = 20 - 10 \cdot 3 \][/tex]
[tex]\[ a(3) = 20 - 30 \][/tex]
[tex]\[ a(3) = -10 \, \text{m/s}^2 \][/tex]
4. For [tex]\( t = 5 \)[/tex] seconds:
[tex]\[ a(5) = 20 - 10 \cdot 5 \][/tex]
[tex]\[ a(5) = 20 - 50 \][/tex]
[tex]\[ a(5) = -30 \, \text{m/s}^2 \][/tex]
### Part (d): Interpretation of Results in Terms of the Directions of Acceleration and Velocity
To interpret the results, we need to compare the signs of velocity and acceleration at different time points:
1. At [tex]\( t = 1 \)[/tex] second:
- Velocity [tex]\( v(1) = 15 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(1) = 10 \, \text{m/s}^2 \)[/tex]
Both velocity and acceleration are positive, meaning the object is speeding up.
2. At [tex]\( t = 2 \)[/tex] seconds:
- Velocity [tex]\( v(2) = 20 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(2) = 0 \, \text{m/s}^2 \)[/tex]
The object is moving with a constant velocity because the acceleration is zero.
3. At [tex]\( t = 3 \)[/tex] seconds:
- Velocity [tex]\( v(3) = 15 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(3) = -10 \, \text{m/s}^2 \)[/tex]
Velocity is positive, but acceleration is negative, indicating the object is slowing down.
4. At [tex]\( t = 5 \)[/tex] seconds:
- Velocity [tex]\( v(5) = -25 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(5) = -30 \, \text{m/s}^2 \)[/tex]
Both velocity and acceleration are negative, meaning the object is speeding up in the negative direction.
Summary Interpretation:
- When acceleration and velocity have the same sign, the object is speeding up.
- When acceleration and velocity have opposite signs, the object is slowing down.
### Part (a): Finding the Functional Form of the Acceleration
The given velocity [tex]\( v(t) \)[/tex] is a function of time [tex]\( t \)[/tex]:
[tex]\[ v(t) = 20t - 5t^2 \][/tex]
Acceleration [tex]\( a(t) \)[/tex] is the derivative of velocity with respect to time:
[tex]\[ a(t) = \frac{dv(t)}{dt} \][/tex]
Differentiating [tex]\( v(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ a(t) = \frac{d(20t - 5t^2)}{dt} \][/tex]
[tex]\[ a(t) = 20 - 10t \][/tex]
So, the functional form of the acceleration is:
[tex]\[ a(t) = 20 - 10t \][/tex]
### Part (b): Finding the Instantaneous Velocity at [tex]\( t = 1, 2, 3, \)[/tex] and [tex]\( 5 \)[/tex] Seconds
To find the instantaneous velocities, we need to substitute the given time values into the velocity function [tex]\( v(t) \)[/tex].
1. For [tex]\( t = 1 \)[/tex] second:
[tex]\[ v(1) = 20 \cdot 1 - 5 \cdot 1^2 \][/tex]
[tex]\[ v(1) = 20 - 5 \][/tex]
[tex]\[ v(1) = 15 \, \text{m/s} \][/tex]
2. For [tex]\( t = 2 \)[/tex] seconds:
[tex]\[ v(2) = 20 \cdot 2 - 5 \cdot 2^2 \][/tex]
[tex]\[ v(2) = 40 - 20 \][/tex]
[tex]\[ v(2) = 20 \, \text{m/s} \][/tex]
3. For [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ v(3) = 20 \cdot 3 - 5 \cdot 3^2 \][/tex]
[tex]\[ v(3) = 60 - 45 \][/tex]
[tex]\[ v(3) = 15 \, \text{m/s} \][/tex]
4. For [tex]\( t = 5 \)[/tex] seconds:
[tex]\[ v(5) = 20 \cdot 5 - 5 \cdot 5^2 \][/tex]
[tex]\[ v(5) = 100 - 125 \][/tex]
[tex]\[ v(5) = -25 \, \text{m/s} \][/tex]
### Part (c): Finding the Instantaneous Acceleration at [tex]\( t = 1, 2, 3, \)[/tex] and [tex]\( 5 \)[/tex] Seconds
To find the instantaneous accelerations, we need to substitute the given time values into the acceleration function [tex]\( a(t) \)[/tex].
1. For [tex]\( t = 1 \)[/tex] second:
[tex]\[ a(1) = 20 - 10 \cdot 1 \][/tex]
[tex]\[ a(1) = 20 - 10 \][/tex]
[tex]\[ a(1) = 10 \, \text{m/s}^2 \][/tex]
2. For [tex]\( t = 2 \)[/tex] seconds:
[tex]\[ a(2) = 20 - 10 \cdot 2 \][/tex]
[tex]\[ a(2) = 20 - 20 \][/tex]
[tex]\[ a(2) = 0 \, \text{m/s}^2 \][/tex]
3. For [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ a(3) = 20 - 10 \cdot 3 \][/tex]
[tex]\[ a(3) = 20 - 30 \][/tex]
[tex]\[ a(3) = -10 \, \text{m/s}^2 \][/tex]
4. For [tex]\( t = 5 \)[/tex] seconds:
[tex]\[ a(5) = 20 - 10 \cdot 5 \][/tex]
[tex]\[ a(5) = 20 - 50 \][/tex]
[tex]\[ a(5) = -30 \, \text{m/s}^2 \][/tex]
### Part (d): Interpretation of Results in Terms of the Directions of Acceleration and Velocity
To interpret the results, we need to compare the signs of velocity and acceleration at different time points:
1. At [tex]\( t = 1 \)[/tex] second:
- Velocity [tex]\( v(1) = 15 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(1) = 10 \, \text{m/s}^2 \)[/tex]
Both velocity and acceleration are positive, meaning the object is speeding up.
2. At [tex]\( t = 2 \)[/tex] seconds:
- Velocity [tex]\( v(2) = 20 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(2) = 0 \, \text{m/s}^2 \)[/tex]
The object is moving with a constant velocity because the acceleration is zero.
3. At [tex]\( t = 3 \)[/tex] seconds:
- Velocity [tex]\( v(3) = 15 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(3) = -10 \, \text{m/s}^2 \)[/tex]
Velocity is positive, but acceleration is negative, indicating the object is slowing down.
4. At [tex]\( t = 5 \)[/tex] seconds:
- Velocity [tex]\( v(5) = -25 \, \text{m/s} \)[/tex]
- Acceleration [tex]\( a(5) = -30 \, \text{m/s}^2 \)[/tex]
Both velocity and acceleration are negative, meaning the object is speeding up in the negative direction.
Summary Interpretation:
- When acceleration and velocity have the same sign, the object is speeding up.
- When acceleration and velocity have opposite signs, the object is slowing down.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Accurate answers are just a click away at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.