Discover how IDNLearn.com can help you find the answers you need quickly and easily. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.

What is the mass defect of a mole of nuclei with [tex]$1.8 \times 10^{15} \text{ J/mol}$[/tex] binding energy?

A. [tex]$6.0 \times 10^6 \text{ kg/mol}$[/tex]
B. [tex][tex]$2.0 \times 10^{-2} \text{ kg/mol}$[/tex][/tex]
C. [tex]$5.4 \times 10^{23} \text{ kg/mol}$[/tex]
D. [tex]$2.0 \times 10 \text{ kg/mol}$[/tex]


Sagot :

To find the mass defect of a mole of nuclei with a given binding energy, we will use Einstein's famous equation that relates energy and mass: [tex]\(E = mc^2\)[/tex]. Here [tex]\(E\)[/tex] represents the energy, [tex]\(m\)[/tex] represents the mass, and [tex]\(c\)[/tex] is the speed of light.

Given data:
- Binding energy [tex]\(E = 1.8 \times 10^{15} \text{ J/mol}\)[/tex]
- Speed of light [tex]\(c = 3 \times 10^8 \text{ m/s}\)[/tex]

We need to find the mass defect [tex]\(m\)[/tex]. Rearranging Einstein's equation to solve for mass we get:
[tex]\[m = \frac{E}{c^2}\][/tex]

Substitute the given values into this equation:
[tex]\[ m = \frac{1.8 \times 10^{15} \text{ J/mol}}{(3 \times 10^8 \text{ m/s})^2} \][/tex]

Calculate the denominator:
[tex]\[ (3 \times 10^8 \text{ m/s})^2 = (3 \times 10^8)^2 \text{ m}^2/\text{s}^2 = 9 \times 10^{16} \text{ m}^2/\text{s}^2 \][/tex]

Next, divide the binding energy by this value:
[tex]\[ m = \frac{1.8 \times 10^{15} \text{ J/mol}}{9 \times 10^{16} \text{ m}^2/\text{s}^2} \][/tex]

Perform the division:
[tex]\[ m = \frac{1.8}{9} \times \frac{10^{15}}{10^{16}} \text{ kg/mol} = 0.2 \times 10^{-1} \text{ kg/mol} \][/tex]

Expressing [tex]\(0.2 \times 10^{-1}\)[/tex] in standard scientific notation, we get:
[tex]\[ m = 2.0 \times 10^{-2} \text{ kg/mol} \][/tex]

Thus, the mass defect of a mole of nuclei with a binding energy of [tex]\(1.8 \times 10^{15} \text{ J/mol}\)[/tex] is:
[tex]\[ \boxed{2.0 \times 10^{-2} \text{ kg/mol}} \][/tex]

Therefore, the correct answer is:
B. [tex]\(2.0 \times 10^{-2} \text{ kg/mol}\)[/tex]