Connect with a community that values knowledge and expertise on IDNLearn.com. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
To solve for [tex]\( y \)[/tex] in the given system of equations using matrices, we need to follow these steps:
### Step 1: Write the system of equations in matrix form
Given the system of linear equations:
[tex]\[ \begin{cases} 2x + 9y = 8 \\ 2x + 8y = 8 \end{cases} \][/tex]
We can represent this system as a matrix equation of the form [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 9 \\ 2 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
### Step 2: Invert the coefficient matrix [tex]\( A \)[/tex]
To solve for [tex]\( \mathbf{x} \)[/tex], we need to find the inverse of the matrix [tex]\( A \)[/tex], denoted [tex]\( A^{-1} \)[/tex]. The inverse of a matrix [tex]\( A \)[/tex] satisfies the equation [tex]\( A A^{-1} = I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix.
The inverse of a matrix [tex]\( A \)[/tex], if it exists, can be found using several methods, such as Gaussian elimination, or using the formula for a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \][/tex]
where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of [tex]\( A \)[/tex],
- [tex]\(\text{adj}(A)\)[/tex] is the adjugate of [tex]\( A \)[/tex].
First, calculate the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2)(8) - (2)(9) = 16 - 18 = -2 \][/tex]
Since the determinant is non-zero ([tex]\(\text{det}(A) = -2\)[/tex]), the matrix [tex]\( A \)[/tex] is invertible.
Next, find the adjugate of [tex]\( A \)[/tex]:
[tex]\[ \text{adj}(A) = \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} \][/tex]
Now, calculate [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \][/tex]
### Step 3: Solve for [tex]\( \mathbf{x} \)[/tex]
We now have [tex]\( A^{-1} \)[/tex]. To find [tex]\( \mathbf{x} \)[/tex], we multiply both sides of the equation [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] by [tex]\( A^{-1} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} \][/tex]
Substitute the values of [tex]\( A^{-1} \)[/tex] and [tex]\( \mathbf{B} \)[/tex]:
[tex]\[ \mathbf{x} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} (-4 \cdot 8) + (4.5 \cdot 8) \\ (1 \cdot 8) + (-1 \cdot 8) \end{pmatrix} = \begin{pmatrix} -32 + 36 \\ 8 - 8 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
Thus, we find:
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
### Step 4: Extract the value of [tex]\( y \)[/tex]
From the solution vector [tex]\(\mathbf{x}\)[/tex], we see that [tex]\( x = 4 \)[/tex] and [tex]\( y = 0 \)[/tex].
Therefore, the value of [tex]\( y \)[/tex] is [tex]\( y = 0 \)[/tex].
### Step 1: Write the system of equations in matrix form
Given the system of linear equations:
[tex]\[ \begin{cases} 2x + 9y = 8 \\ 2x + 8y = 8 \end{cases} \][/tex]
We can represent this system as a matrix equation of the form [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 9 \\ 2 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
### Step 2: Invert the coefficient matrix [tex]\( A \)[/tex]
To solve for [tex]\( \mathbf{x} \)[/tex], we need to find the inverse of the matrix [tex]\( A \)[/tex], denoted [tex]\( A^{-1} \)[/tex]. The inverse of a matrix [tex]\( A \)[/tex] satisfies the equation [tex]\( A A^{-1} = I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix.
The inverse of a matrix [tex]\( A \)[/tex], if it exists, can be found using several methods, such as Gaussian elimination, or using the formula for a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \][/tex]
where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of [tex]\( A \)[/tex],
- [tex]\(\text{adj}(A)\)[/tex] is the adjugate of [tex]\( A \)[/tex].
First, calculate the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2)(8) - (2)(9) = 16 - 18 = -2 \][/tex]
Since the determinant is non-zero ([tex]\(\text{det}(A) = -2\)[/tex]), the matrix [tex]\( A \)[/tex] is invertible.
Next, find the adjugate of [tex]\( A \)[/tex]:
[tex]\[ \text{adj}(A) = \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} \][/tex]
Now, calculate [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \][/tex]
### Step 3: Solve for [tex]\( \mathbf{x} \)[/tex]
We now have [tex]\( A^{-1} \)[/tex]. To find [tex]\( \mathbf{x} \)[/tex], we multiply both sides of the equation [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] by [tex]\( A^{-1} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} \][/tex]
Substitute the values of [tex]\( A^{-1} \)[/tex] and [tex]\( \mathbf{B} \)[/tex]:
[tex]\[ \mathbf{x} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} (-4 \cdot 8) + (4.5 \cdot 8) \\ (1 \cdot 8) + (-1 \cdot 8) \end{pmatrix} = \begin{pmatrix} -32 + 36 \\ 8 - 8 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
Thus, we find:
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
### Step 4: Extract the value of [tex]\( y \)[/tex]
From the solution vector [tex]\(\mathbf{x}\)[/tex], we see that [tex]\( x = 4 \)[/tex] and [tex]\( y = 0 \)[/tex].
Therefore, the value of [tex]\( y \)[/tex] is [tex]\( y = 0 \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.