IDNLearn.com connects you with a community of experts ready to answer your questions. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
To solve for [tex]\( y \)[/tex] in the given system of equations using matrices, we need to follow these steps:
### Step 1: Write the system of equations in matrix form
Given the system of linear equations:
[tex]\[ \begin{cases} 2x + 9y = 8 \\ 2x + 8y = 8 \end{cases} \][/tex]
We can represent this system as a matrix equation of the form [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 9 \\ 2 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
### Step 2: Invert the coefficient matrix [tex]\( A \)[/tex]
To solve for [tex]\( \mathbf{x} \)[/tex], we need to find the inverse of the matrix [tex]\( A \)[/tex], denoted [tex]\( A^{-1} \)[/tex]. The inverse of a matrix [tex]\( A \)[/tex] satisfies the equation [tex]\( A A^{-1} = I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix.
The inverse of a matrix [tex]\( A \)[/tex], if it exists, can be found using several methods, such as Gaussian elimination, or using the formula for a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \][/tex]
where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of [tex]\( A \)[/tex],
- [tex]\(\text{adj}(A)\)[/tex] is the adjugate of [tex]\( A \)[/tex].
First, calculate the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2)(8) - (2)(9) = 16 - 18 = -2 \][/tex]
Since the determinant is non-zero ([tex]\(\text{det}(A) = -2\)[/tex]), the matrix [tex]\( A \)[/tex] is invertible.
Next, find the adjugate of [tex]\( A \)[/tex]:
[tex]\[ \text{adj}(A) = \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} \][/tex]
Now, calculate [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \][/tex]
### Step 3: Solve for [tex]\( \mathbf{x} \)[/tex]
We now have [tex]\( A^{-1} \)[/tex]. To find [tex]\( \mathbf{x} \)[/tex], we multiply both sides of the equation [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] by [tex]\( A^{-1} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} \][/tex]
Substitute the values of [tex]\( A^{-1} \)[/tex] and [tex]\( \mathbf{B} \)[/tex]:
[tex]\[ \mathbf{x} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} (-4 \cdot 8) + (4.5 \cdot 8) \\ (1 \cdot 8) + (-1 \cdot 8) \end{pmatrix} = \begin{pmatrix} -32 + 36 \\ 8 - 8 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
Thus, we find:
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
### Step 4: Extract the value of [tex]\( y \)[/tex]
From the solution vector [tex]\(\mathbf{x}\)[/tex], we see that [tex]\( x = 4 \)[/tex] and [tex]\( y = 0 \)[/tex].
Therefore, the value of [tex]\( y \)[/tex] is [tex]\( y = 0 \)[/tex].
### Step 1: Write the system of equations in matrix form
Given the system of linear equations:
[tex]\[ \begin{cases} 2x + 9y = 8 \\ 2x + 8y = 8 \end{cases} \][/tex]
We can represent this system as a matrix equation of the form [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 9 \\ 2 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
### Step 2: Invert the coefficient matrix [tex]\( A \)[/tex]
To solve for [tex]\( \mathbf{x} \)[/tex], we need to find the inverse of the matrix [tex]\( A \)[/tex], denoted [tex]\( A^{-1} \)[/tex]. The inverse of a matrix [tex]\( A \)[/tex] satisfies the equation [tex]\( A A^{-1} = I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix.
The inverse of a matrix [tex]\( A \)[/tex], if it exists, can be found using several methods, such as Gaussian elimination, or using the formula for a 2x2 matrix:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \][/tex]
where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of [tex]\( A \)[/tex],
- [tex]\(\text{adj}(A)\)[/tex] is the adjugate of [tex]\( A \)[/tex].
First, calculate the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2)(8) - (2)(9) = 16 - 18 = -2 \][/tex]
Since the determinant is non-zero ([tex]\(\text{det}(A) = -2\)[/tex]), the matrix [tex]\( A \)[/tex] is invertible.
Next, find the adjugate of [tex]\( A \)[/tex]:
[tex]\[ \text{adj}(A) = \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} \][/tex]
Now, calculate [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -9 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \][/tex]
### Step 3: Solve for [tex]\( \mathbf{x} \)[/tex]
We now have [tex]\( A^{-1} \)[/tex]. To find [tex]\( \mathbf{x} \)[/tex], we multiply both sides of the equation [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] by [tex]\( A^{-1} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} \][/tex]
Substitute the values of [tex]\( A^{-1} \)[/tex] and [tex]\( \mathbf{B} \)[/tex]:
[tex]\[ \mathbf{x} = \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -4 & 4.5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} (-4 \cdot 8) + (4.5 \cdot 8) \\ (1 \cdot 8) + (-1 \cdot 8) \end{pmatrix} = \begin{pmatrix} -32 + 36 \\ 8 - 8 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
Thus, we find:
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \][/tex]
### Step 4: Extract the value of [tex]\( y \)[/tex]
From the solution vector [tex]\(\mathbf{x}\)[/tex], we see that [tex]\( x = 4 \)[/tex] and [tex]\( y = 0 \)[/tex].
Therefore, the value of [tex]\( y \)[/tex] is [tex]\( y = 0 \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.