From personal advice to professional guidance, IDNLearn.com has the answers you seek. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To prove the statement:
[tex]\[ (\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^{n + 1} \cos \frac{n \pi}{6} \][/tex]
where [tex]\( n \)[/tex] is a positive integer, let us examine the statement in detail.
Step 1: Express the complex numbers in polar form
First, consider the complex numbers [tex]\(\sqrt{3} + i\)[/tex] and [tex]\(\sqrt{3} - i\)[/tex].
For [tex]\(\sqrt{3} + i\)[/tex]:
- The modulus [tex]\( r \)[/tex] is [tex]\( \sqrt{ (\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \)[/tex].
- The argument [tex]\( \theta \)[/tex] is [tex]\( \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \)[/tex].
Therefore,
[tex]\[ \sqrt{3} + i = 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \][/tex]
Similarly, for [tex]\(\sqrt{3} - i\)[/tex]:
- The modulus is also [tex]\( 2 \)[/tex].
- The argument is [tex]\( -\frac{\pi}{6} \)[/tex].
Thus,
[tex]\[ \sqrt{3} - i = 2 \left( \cos \left( -\frac{\pi}{6} \right) + i \sin \left( -\frac{\pi}{6} \right) \right) \][/tex]
Step 2: Raise these expressions to the [tex]\( n \)[/tex]-th power
Using De Moivre's Theorem which states [tex]\((re^{i \theta})^n = r^n e^{i n\theta}\)[/tex], we have:
[tex]\[ (\sqrt{3} + i)^n = \left[ 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \right]^n = 2^n \left( \cos \frac{n\pi}{6} + i \sin \frac{n\pi}{6} \right) \][/tex]
Similarly,
[tex]\[ (\sqrt{3} - i)^n = \left[ 2 \left( \cos \left(-\frac{\pi}{6}\right) + i \sin \left( -\frac{\pi}{6} \right) \right) \right]^n = 2^n \left( \cos \left( -\frac{n \pi}{6} \right) + i \sin \left( -\frac{n \pi}{6} \right) \right) \][/tex]
Step 3: Add the two expressions
Next, we add [tex]\((\sqrt{3} + i)^n\)[/tex] and [tex]\((\sqrt{3} - i)^n\)[/tex]:
[tex]\[ (\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^n \left( \cos \frac{n \pi}{6} + i \sin \frac{n \pi}{6} \right) + 2^n \left( \cos \left( -\frac{n \pi}{6} \right) + i \sin \left( -\frac{n \pi}{6} \right) \right) \][/tex]
Using the identity that [tex]\(\cos(-x) = \cos(x)\)[/tex] and [tex]\(\sin(-x) = -\sin(x)\)[/tex], we get:
[tex]\[ 2^n \left( \cos \frac{n \pi}{6} + i \sin \frac{n \pi}{6} \right) + 2^n \left( \cos \frac{n \pi}{6} - i \sin \frac{n \pi}{6} \right) \][/tex]
Combining like terms:
[tex]\[ 2^n \left( \cos \frac{n \pi}{6} + \cos \frac{n \pi}{6} \right) = 2 \cdot 2^n \cos \frac{n \pi}{6} \][/tex]
Simplifying:
[tex]\[ 2^{n + 1} \cos \frac{n \pi}{6} \][/tex]
Therefore,
[tex]\[ (\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^{n + 1} \cos \frac{n \pi}{6} \][/tex]
This completes the proof. The expression holds true for any positive integer [tex]\( n \)[/tex].
[tex]\[ (\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^{n + 1} \cos \frac{n \pi}{6} \][/tex]
where [tex]\( n \)[/tex] is a positive integer, let us examine the statement in detail.
Step 1: Express the complex numbers in polar form
First, consider the complex numbers [tex]\(\sqrt{3} + i\)[/tex] and [tex]\(\sqrt{3} - i\)[/tex].
For [tex]\(\sqrt{3} + i\)[/tex]:
- The modulus [tex]\( r \)[/tex] is [tex]\( \sqrt{ (\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \)[/tex].
- The argument [tex]\( \theta \)[/tex] is [tex]\( \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \)[/tex].
Therefore,
[tex]\[ \sqrt{3} + i = 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \][/tex]
Similarly, for [tex]\(\sqrt{3} - i\)[/tex]:
- The modulus is also [tex]\( 2 \)[/tex].
- The argument is [tex]\( -\frac{\pi}{6} \)[/tex].
Thus,
[tex]\[ \sqrt{3} - i = 2 \left( \cos \left( -\frac{\pi}{6} \right) + i \sin \left( -\frac{\pi}{6} \right) \right) \][/tex]
Step 2: Raise these expressions to the [tex]\( n \)[/tex]-th power
Using De Moivre's Theorem which states [tex]\((re^{i \theta})^n = r^n e^{i n\theta}\)[/tex], we have:
[tex]\[ (\sqrt{3} + i)^n = \left[ 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \right]^n = 2^n \left( \cos \frac{n\pi}{6} + i \sin \frac{n\pi}{6} \right) \][/tex]
Similarly,
[tex]\[ (\sqrt{3} - i)^n = \left[ 2 \left( \cos \left(-\frac{\pi}{6}\right) + i \sin \left( -\frac{\pi}{6} \right) \right) \right]^n = 2^n \left( \cos \left( -\frac{n \pi}{6} \right) + i \sin \left( -\frac{n \pi}{6} \right) \right) \][/tex]
Step 3: Add the two expressions
Next, we add [tex]\((\sqrt{3} + i)^n\)[/tex] and [tex]\((\sqrt{3} - i)^n\)[/tex]:
[tex]\[ (\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^n \left( \cos \frac{n \pi}{6} + i \sin \frac{n \pi}{6} \right) + 2^n \left( \cos \left( -\frac{n \pi}{6} \right) + i \sin \left( -\frac{n \pi}{6} \right) \right) \][/tex]
Using the identity that [tex]\(\cos(-x) = \cos(x)\)[/tex] and [tex]\(\sin(-x) = -\sin(x)\)[/tex], we get:
[tex]\[ 2^n \left( \cos \frac{n \pi}{6} + i \sin \frac{n \pi}{6} \right) + 2^n \left( \cos \frac{n \pi}{6} - i \sin \frac{n \pi}{6} \right) \][/tex]
Combining like terms:
[tex]\[ 2^n \left( \cos \frac{n \pi}{6} + \cos \frac{n \pi}{6} \right) = 2 \cdot 2^n \cos \frac{n \pi}{6} \][/tex]
Simplifying:
[tex]\[ 2^{n + 1} \cos \frac{n \pi}{6} \][/tex]
Therefore,
[tex]\[ (\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^{n + 1} \cos \frac{n \pi}{6} \][/tex]
This completes the proof. The expression holds true for any positive integer [tex]\( n \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.