Get the best answers to your questions with the help of IDNLearn.com's experts. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
Let's start by analyzing the given problem step by step.
### (a) Finding the parameter [tex]\( b \)[/tex]
The probability mass function (PMF) of a random variable [tex]\( X \)[/tex] is given by:
[tex]\[ p_x(x) = b \frac{\lambda^x}{x!}, \quad x = 0,1,2,\ldots \][/tex]
To determine the parameter [tex]\( b \)[/tex], we need to use the fact that the sum of all probabilities for the PMF must be equal to 1:
[tex]\[ \sum_{x=0}^{\infty} p_x(x) = 1 \][/tex]
Substituting the given PMF into the sum, we have:
[tex]\[ \sum_{x=0}^{\infty} b \frac{\lambda^x}{x!} = 1 \][/tex]
This is a series recognized as the Maclaurin series expansion for the exponential function [tex]\( e^\lambda \)[/tex]:
[tex]\[ \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^\lambda \][/tex]
Thus, we can rewrite the equation as:
[tex]\[ b \cdot e^\lambda = 1 \][/tex]
Solving for [tex]\( b \)[/tex], we get:
[tex]\[ b = \frac{1}{e^\lambda} \][/tex]
Given a specific value [tex]\( \lambda = 1 \)[/tex] (since [tex]\(\lambda > 0\)[/tex]), the value of [tex]\( b \)[/tex] calculates to:
[tex]\[ b = \frac{1}{e} \approx 0.36787944117144233 \][/tex]
### (b) Calculating [tex]\( P[X=1] \)[/tex]
To find [tex]\( P[X=1] \)[/tex], we substitute [tex]\( x = 1 \)[/tex] into the PMF:
[tex]\[ P[X=1] = p_x(1) = b \frac{\lambda^1}{1!} \][/tex]
Using the previously calculated value of [tex]\( b \)[/tex] and [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ P[X=1] = \left(\frac{1}{e}\right) \cdot \frac{1^1}{1!} \][/tex]
Which simplifies to:
[tex]\[ P[X=1] = \frac{1}{e} \approx 0.36787944117144233 \][/tex]
### (c) Calculating [tex]\( P[X>3] \)[/tex]
To find [tex]\( P[X>3] \)[/tex], we first need to calculate [tex]\( P[X \leq 3] \)[/tex]. This can be done by summing the probabilities of [tex]\( P[X=0] \)[/tex], [tex]\( P[X=1] \)[/tex], [tex]\( P[X=2] \)[/tex], and [tex]\( P[X=3] \)[/tex]:
[tex]\[ P[X \leq 3] = P[X=0] + P[X=1] + P[X=2] + P[X=3] \][/tex]
Given the PMF, these probabilities are:
[tex]\[ P[X=0] = b \frac{\lambda^0}{0!} = \left(\frac{1}{e}\right) \cdot \frac{1}{1} = \frac{1}{e} \][/tex]
[tex]\[ P[X=1] = b \frac{\lambda^1}{1!} = \left(\frac{1}{e}\right) \cdot \frac{1}{1} = \frac{1}{e} \][/tex]
[tex]\[ P[X=2] = b \frac{\lambda^2}{2!} = \left(\frac{1}{e}\right) \cdot \frac{1^2}{2} = \frac{1}{2e} \][/tex]
[tex]\[ P[X=3] = b \frac{\lambda^3}{3!} = \left(\frac{1}{e}\right) \cdot \frac{1^3}{6} = \frac{1}{6e} \][/tex]
Adding these probabilities together:
[tex]\[ P[X \leq 3] = \frac{1}{e} + \frac{1}{e} + \frac{1}{2e} + \frac{1}{6e} \][/tex]
This simplifies to:
[tex]\[ P[X \leq 3] = \frac{1}{e} \left(1 + 1 + \frac{1}{2} + \frac{1}{6} \right) = \frac{1}{e} \left(\frac{6 + 6 + 3 + 1}{6} \right) = \frac{1}{e} \left(\frac{16}{6} \right) = \frac{8}{3e} \][/tex]
Using [tex]\( e \approx 2.71828 \)[/tex]:
[tex]\[ P[X \leq 3] \approx \frac{8}{3 \cdot 2.71828} \approx 0.9810118431238463 \][/tex]
Finally, [tex]\( P[X > 3] \)[/tex] is the complement of [tex]\( P[X \leq 3] \)[/tex]:
[tex]\[ P[X > 3] = 1 - P[X \leq 3] \approx 1 - 0.9810118431238463 = 0.01898815687615374 \][/tex]
Thus, the computed values are:
- (a) [tex]\( b \approx 0.36787944117144233 \)[/tex]
- (b) [tex]\( P[X=1] \approx 0.36787944117144233 \)[/tex]
- (c) [tex]\( P[X>3] \approx 0.01898815687615374 \)[/tex]
### (a) Finding the parameter [tex]\( b \)[/tex]
The probability mass function (PMF) of a random variable [tex]\( X \)[/tex] is given by:
[tex]\[ p_x(x) = b \frac{\lambda^x}{x!}, \quad x = 0,1,2,\ldots \][/tex]
To determine the parameter [tex]\( b \)[/tex], we need to use the fact that the sum of all probabilities for the PMF must be equal to 1:
[tex]\[ \sum_{x=0}^{\infty} p_x(x) = 1 \][/tex]
Substituting the given PMF into the sum, we have:
[tex]\[ \sum_{x=0}^{\infty} b \frac{\lambda^x}{x!} = 1 \][/tex]
This is a series recognized as the Maclaurin series expansion for the exponential function [tex]\( e^\lambda \)[/tex]:
[tex]\[ \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^\lambda \][/tex]
Thus, we can rewrite the equation as:
[tex]\[ b \cdot e^\lambda = 1 \][/tex]
Solving for [tex]\( b \)[/tex], we get:
[tex]\[ b = \frac{1}{e^\lambda} \][/tex]
Given a specific value [tex]\( \lambda = 1 \)[/tex] (since [tex]\(\lambda > 0\)[/tex]), the value of [tex]\( b \)[/tex] calculates to:
[tex]\[ b = \frac{1}{e} \approx 0.36787944117144233 \][/tex]
### (b) Calculating [tex]\( P[X=1] \)[/tex]
To find [tex]\( P[X=1] \)[/tex], we substitute [tex]\( x = 1 \)[/tex] into the PMF:
[tex]\[ P[X=1] = p_x(1) = b \frac{\lambda^1}{1!} \][/tex]
Using the previously calculated value of [tex]\( b \)[/tex] and [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ P[X=1] = \left(\frac{1}{e}\right) \cdot \frac{1^1}{1!} \][/tex]
Which simplifies to:
[tex]\[ P[X=1] = \frac{1}{e} \approx 0.36787944117144233 \][/tex]
### (c) Calculating [tex]\( P[X>3] \)[/tex]
To find [tex]\( P[X>3] \)[/tex], we first need to calculate [tex]\( P[X \leq 3] \)[/tex]. This can be done by summing the probabilities of [tex]\( P[X=0] \)[/tex], [tex]\( P[X=1] \)[/tex], [tex]\( P[X=2] \)[/tex], and [tex]\( P[X=3] \)[/tex]:
[tex]\[ P[X \leq 3] = P[X=0] + P[X=1] + P[X=2] + P[X=3] \][/tex]
Given the PMF, these probabilities are:
[tex]\[ P[X=0] = b \frac{\lambda^0}{0!} = \left(\frac{1}{e}\right) \cdot \frac{1}{1} = \frac{1}{e} \][/tex]
[tex]\[ P[X=1] = b \frac{\lambda^1}{1!} = \left(\frac{1}{e}\right) \cdot \frac{1}{1} = \frac{1}{e} \][/tex]
[tex]\[ P[X=2] = b \frac{\lambda^2}{2!} = \left(\frac{1}{e}\right) \cdot \frac{1^2}{2} = \frac{1}{2e} \][/tex]
[tex]\[ P[X=3] = b \frac{\lambda^3}{3!} = \left(\frac{1}{e}\right) \cdot \frac{1^3}{6} = \frac{1}{6e} \][/tex]
Adding these probabilities together:
[tex]\[ P[X \leq 3] = \frac{1}{e} + \frac{1}{e} + \frac{1}{2e} + \frac{1}{6e} \][/tex]
This simplifies to:
[tex]\[ P[X \leq 3] = \frac{1}{e} \left(1 + 1 + \frac{1}{2} + \frac{1}{6} \right) = \frac{1}{e} \left(\frac{6 + 6 + 3 + 1}{6} \right) = \frac{1}{e} \left(\frac{16}{6} \right) = \frac{8}{3e} \][/tex]
Using [tex]\( e \approx 2.71828 \)[/tex]:
[tex]\[ P[X \leq 3] \approx \frac{8}{3 \cdot 2.71828} \approx 0.9810118431238463 \][/tex]
Finally, [tex]\( P[X > 3] \)[/tex] is the complement of [tex]\( P[X \leq 3] \)[/tex]:
[tex]\[ P[X > 3] = 1 - P[X \leq 3] \approx 1 - 0.9810118431238463 = 0.01898815687615374 \][/tex]
Thus, the computed values are:
- (a) [tex]\( b \approx 0.36787944117144233 \)[/tex]
- (b) [tex]\( P[X=1] \approx 0.36787944117144233 \)[/tex]
- (c) [tex]\( P[X>3] \approx 0.01898815687615374 \)[/tex]
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.