IDNLearn.com offers a unique blend of expert answers and community-driven insights. Ask any question and receive timely, accurate responses from our dedicated community of experts.

Using standard reduction potentials from the ALEKS Data tab, calculate the standard cell potential. Round your answer to 3 significant digits.

[tex]\[ 10 \text{Br} ^{-}(aq) + 2 \text{MnO} _4^{-}(aq) + 16 \text{H} ^{+}(aq) \rightarrow 5 \text{Br}_2(l) + 2 \text{Mn} ^{2+}(aq) + 8 \text{H}_2 \text{O}(l) \][/tex]

kJ [tex]$\square$[/tex] × 10


Sagot :

To calculate the standard Gibbs free energy change (ΔG°) for the given reaction, we need to use the concept of standard reduction potentials and the Gibbs free energy equation. Here’s the step-by-step solution:

1. Identify the half-reactions and their corresponding standard reduction potentials:
- Reduction half-reaction for [tex]\( \text{MnO}_4^- \)[/tex]:
[tex]\[ \text{MnO}_4^- + 8H^+ + 5e^- \rightarrow \text{Mn}^{2+} + 4H_2O \][/tex]
with [tex]\( E^\circ = 1.51 \text{ V} \)[/tex]

- Oxidation half-reaction for [tex]\( \text{Br}^- \)[/tex]:
[tex]\[ 2\text{Br}^- \rightarrow \text{Br}_2 + 2e^- \][/tex]
The standard reduction potential for [tex]\(\text{Br}_2 + 2e^- \rightarrow 2\text{Br}^- \)[/tex] is [tex]\(1.07 \text{ V}\)[/tex], but for oxidation, it’s flipped to:
[tex]\[ E^\circ = -1.07 \text{ V} \][/tex]

2. Determine the overall cell potential (E°cell):
[tex]\[ E^\circ_\text{cell} = E^\circ_{\text{reduction}} - E^\circ_{\text{oxidation}} \][/tex]
which gives:
[tex]\[ E^\circ_\text{cell} = 1.51 \text{ V} - 1.07 \text{ V} = 0.44 \text{ V} \][/tex]

3. Calculate the Gibbs free energy change (ΔG°):
We use the formula:
[tex]\[ \Delta G^\circ = -nFE^\circ_\text{cell} \][/tex]
Where:
- [tex]\( n \)[/tex] = number of moles of electrons transferred in the balanced equation.
- [tex]\( F \)[/tex] = Faraday's constant = [tex]\( 96485 \text{ C/mol} \)[/tex].

From the balanced equation, we note that 10 [tex]\( \text{Br}^- \)[/tex] lose 10 electrons (since [tex]\(2 \text{MnO}_4^- \)[/tex] corresponds to 10 electrons), so [tex]\( n = 10 \)[/tex].

4. Substitute and calculate ΔG° in Joules:
[tex]\[ \Delta G^\circ = - (10 \text{ mol}) (96485 \text{ C/mol}) (0.44 \text{ V}) = -424533.99999999994 \text{ J} \][/tex]

5. Convert ΔG° into kJ (since 1 kJ = 1000 J):
[tex]\[ \Delta G^\circ = -424533.99999999994 \text{ J} / 1000 = -424.534 \text{ kJ} \][/tex]

6. Round the ΔG° to 3 significant digits:
[tex]\[ \Delta G^\circ \approx -424.534 \text{ kJ} \][/tex]

Thus, the standard Gibbs free energy change for the given reaction, rounded to 3 significant digits, is:
[tex]\[ \boxed{-424.534 \text{ kJ} \times 10 } \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.