Find detailed and accurate answers to your questions on IDNLearn.com. Our experts are available to provide in-depth and trustworthy answers to any questions you may have.
Sagot :
Sure! To find the electric field at point [tex]\( P \)[/tex] from the given charges, we can follow a step-by-step approach. Let's first visualize the scenario with a diagram.
```markdown
Diagram:
Y-axis
|
P (0, 3m)
| q2(4m, 0)
| /
| /
| /
| /
| /
| /
| /
| /
| / q1(0, 0)
| /________________________________________ X-axis
```
We'll calculate the electric field contributions from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] at point [tex]\( P \)[/tex].
1. Constants and positions:
- Charge [tex]\( q_1 = +10 \, \text{nC} = 10 \times 10^{-9} \, \text{C}\)[/tex],
- Charge [tex]\( q_2 = +15 \, \text{nC} = 15 \times 10^{-9} \, \text{C}\)[/tex],
- Electrostatic constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- Position of [tex]\( q_1 \)[/tex]: [tex]\((0, 0)\)[/tex],
- Position of [tex]\( q_2 \)[/tex]: [tex]\((4 \, \text{m}, 0)\)[/tex],
- Position of point [tex]\( P \)[/tex]: [tex]\((0, 3 \, \text{m})\)[/tex].
2. Calculate the distances from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] to point [tex]\( P \)[/tex]:
[tex]\[ r_1 = \sqrt{(0 - 0)^2 + (3 - 0)^2} = 3 \, \text{m} \][/tex]
[tex]\[ r_2 = \sqrt{(0 - 4)^2 + (3 - 0)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \, \text{m} \][/tex]
3. Calculate the magnitudes of the electric field components from each charge:
[tex]\[ E_1 = \frac{k \times q_1}{r_1^2} = \frac{8.99 \times 10^9 \times 10 \times 10^{-9}}{3^2} = 9.988888888888889 \, \text{N/C} \][/tex]
[tex]\[ E_2 = \frac{k \times q_2}{r_2^2} = \frac{8.99 \times 10^9 \times 15 \times 10^{-9}}{5^2} = 5.394 \, \text{N/C} \][/tex]
4. Breakdown the electric field from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] into components:
- For [tex]\( q_1 \)[/tex], the electric field [tex]\( E_1 \)[/tex] is entirely in the positive y-direction since [tex]\( P \)[/tex] is directly above [tex]\( q_1 \)[/tex]:
[tex]\[ E_{1x} = 0 \][/tex]
[tex]\[ E_{1y} = 9.988888888888889 \, \text{N/C} \][/tex]
- For [tex]\( q_2 \)[/tex], we need to break down [tex]\( E_2 \)[/tex] into x and y components:
[tex]\[ E_{2x} = - E_2 \times \frac{4}{5} = - 5.394 \times \frac{4}{5} = 4.3152 \, \text{N/C} \][/tex]
[tex]\[ E_{2y} = - E_2 \times \frac{3}{5} = - 5.394 \times \frac{3}{5} = -3.2364000000000006 \, \text{N/C} \][/tex]
5. Sum the components of the electric fields at point [tex]\( P \)[/tex]:
- X-component:
[tex]\[ E_x = E_{1x} + E_{2x} = 0 + 4.3152 = 4.3152 \, \text{N/C} \][/tex]
- Y-component:
[tex]\[ E_y = E_{1y} + E_{2y} = 9.988888888888889 + (-3.2364000000000006) = 6.752488888888888 \, \text{N/C} \][/tex]
6. Calculate the resultant electric field at point [tex]\( P \)[/tex]:
[tex]\[ E_{\text{total}} = \sqrt{E_x^2 + E_y^2} = \sqrt{(4.3152)^2 + (6.752488888888888)^2} \approx 8.01355459422146 \, \text{N/C} \][/tex]
So, the magnitudes of the electric fields from each charge and the resultant field at point [tex]\( P \)[/tex] are as follows:
- Field from [tex]\( q_1 \)[/tex]: [tex]\( 9.988888888888889 \, \text{N/C} \)[/tex],
- Field from [tex]\( q_2 \)[/tex]: [tex]\( 5.394 \, \text{N/C} \)[/tex],
- Resultant electric field at [tex]\( P \)[/tex] [tex]\( (4.3152 \, \text{N/C}, 6.752488888888888 \, \text{N/C}) \)[/tex],
- Total magnitude of the electric field at [tex]\( P \)[/tex]: [tex]\( 8.01355459422146 \, \text{N/C} \)[/tex].
This gives us a detailed, step-by-step solution for determining the electric field at point [tex]\( P \)[/tex], considering both the contributions from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex].
```markdown
Diagram:
Y-axis
|
P (0, 3m)
| q2(4m, 0)
| /
| /
| /
| /
| /
| /
| /
| /
| / q1(0, 0)
| /________________________________________ X-axis
```
We'll calculate the electric field contributions from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] at point [tex]\( P \)[/tex].
1. Constants and positions:
- Charge [tex]\( q_1 = +10 \, \text{nC} = 10 \times 10^{-9} \, \text{C}\)[/tex],
- Charge [tex]\( q_2 = +15 \, \text{nC} = 15 \times 10^{-9} \, \text{C}\)[/tex],
- Electrostatic constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- Position of [tex]\( q_1 \)[/tex]: [tex]\((0, 0)\)[/tex],
- Position of [tex]\( q_2 \)[/tex]: [tex]\((4 \, \text{m}, 0)\)[/tex],
- Position of point [tex]\( P \)[/tex]: [tex]\((0, 3 \, \text{m})\)[/tex].
2. Calculate the distances from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] to point [tex]\( P \)[/tex]:
[tex]\[ r_1 = \sqrt{(0 - 0)^2 + (3 - 0)^2} = 3 \, \text{m} \][/tex]
[tex]\[ r_2 = \sqrt{(0 - 4)^2 + (3 - 0)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \, \text{m} \][/tex]
3. Calculate the magnitudes of the electric field components from each charge:
[tex]\[ E_1 = \frac{k \times q_1}{r_1^2} = \frac{8.99 \times 10^9 \times 10 \times 10^{-9}}{3^2} = 9.988888888888889 \, \text{N/C} \][/tex]
[tex]\[ E_2 = \frac{k \times q_2}{r_2^2} = \frac{8.99 \times 10^9 \times 15 \times 10^{-9}}{5^2} = 5.394 \, \text{N/C} \][/tex]
4. Breakdown the electric field from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] into components:
- For [tex]\( q_1 \)[/tex], the electric field [tex]\( E_1 \)[/tex] is entirely in the positive y-direction since [tex]\( P \)[/tex] is directly above [tex]\( q_1 \)[/tex]:
[tex]\[ E_{1x} = 0 \][/tex]
[tex]\[ E_{1y} = 9.988888888888889 \, \text{N/C} \][/tex]
- For [tex]\( q_2 \)[/tex], we need to break down [tex]\( E_2 \)[/tex] into x and y components:
[tex]\[ E_{2x} = - E_2 \times \frac{4}{5} = - 5.394 \times \frac{4}{5} = 4.3152 \, \text{N/C} \][/tex]
[tex]\[ E_{2y} = - E_2 \times \frac{3}{5} = - 5.394 \times \frac{3}{5} = -3.2364000000000006 \, \text{N/C} \][/tex]
5. Sum the components of the electric fields at point [tex]\( P \)[/tex]:
- X-component:
[tex]\[ E_x = E_{1x} + E_{2x} = 0 + 4.3152 = 4.3152 \, \text{N/C} \][/tex]
- Y-component:
[tex]\[ E_y = E_{1y} + E_{2y} = 9.988888888888889 + (-3.2364000000000006) = 6.752488888888888 \, \text{N/C} \][/tex]
6. Calculate the resultant electric field at point [tex]\( P \)[/tex]:
[tex]\[ E_{\text{total}} = \sqrt{E_x^2 + E_y^2} = \sqrt{(4.3152)^2 + (6.752488888888888)^2} \approx 8.01355459422146 \, \text{N/C} \][/tex]
So, the magnitudes of the electric fields from each charge and the resultant field at point [tex]\( P \)[/tex] are as follows:
- Field from [tex]\( q_1 \)[/tex]: [tex]\( 9.988888888888889 \, \text{N/C} \)[/tex],
- Field from [tex]\( q_2 \)[/tex]: [tex]\( 5.394 \, \text{N/C} \)[/tex],
- Resultant electric field at [tex]\( P \)[/tex] [tex]\( (4.3152 \, \text{N/C}, 6.752488888888888 \, \text{N/C}) \)[/tex],
- Total magnitude of the electric field at [tex]\( P \)[/tex]: [tex]\( 8.01355459422146 \, \text{N/C} \)[/tex].
This gives us a detailed, step-by-step solution for determining the electric field at point [tex]\( P \)[/tex], considering both the contributions from [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.