IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.

QUESTION SIX

(a) The rate constant for the first-order decomposition of ethylene oxide into [tex]CH_4[/tex] and [tex]CO[/tex] follows the equation:

[tex]\[ \log k \left( \text{in s}^{-1} \right) = 14.34 - \left( \frac{1.25 \times 10^4 \, \text{K}}{T} \right) \][/tex]

Calculate:
(i) The activation energy of the reaction.
(ii) The rate constant at 700 K.
(iii) The frequency factor, [tex]A[/tex].

(5 marks)


Sagot :

Certainly! Let's solve the given question step by step.

Given:
The rate constant for the decomposition of ethylene oxide follows:
[tex]$ \log k \left( \text{in s}^{-1} \right) = 14.34 - \frac{1.25 \times 10^4}{T} $[/tex]

We need to calculate:
(i) The activation energy of the reaction.
(ii) The rate constant at 700 K.
(iii) The frequency factor, A.

### (i) Calculate the Activation Energy of the Reaction

The general form of the Arrhenius equation is:
[tex]$ \log k = \log A - \frac{E_a}{2.303RT} $[/tex]

Comparing with the given equation:
[tex]$ \log k = 14.34 - \frac{1.25 \times 10^4 K}{T} $[/tex]

Here, the term [tex]$\frac{1.25 \times 10^4 K}{T}$[/tex] represents the ratio [tex]$\frac{E_a}{2.303RT}$[/tex].

We need to find the activation energy [tex]\( E_a \)[/tex]:
Given:
[tex]\[ \frac{E_a}{2.303R} = 1.25 \times 10^4 K \][/tex]
[tex]\[ R = 8.314 \text{ J/mol·K} \][/tex]

Solving for [tex]\( E_a \)[/tex]:
[tex]\[ E_a = 1.25 \times 10^4 \times 2.303 \times 8.314 \][/tex]
[tex]\[ E_a = 1.25 \times 10^4 \times 19.14282 \][/tex]
[tex]\[ E_a = 239285.25 \text{ J/mol} \text{ or } 239.285 \text{ kJ/mol} \][/tex]

However, this value can be converted to Joules (as the provided answer is in Joules) simply.
Thus, the activation energy ([tex]\( E_a \)[/tex]) is:
[tex]\[ E_a = 239285.25 \text{ J/mol} \][/tex]

### (ii) Calculate the Rate Constant at 700 K

Now, using the given formula:
[tex]\[ \log k = 14.34 - \frac{1.25 \times 10^4}{700} \][/tex]

First, calculate the exponent:
[tex]\[ \frac{1.25 \times 10^4}{700} = 17.8571 \][/tex]

So,
[tex]\[ \log k = 14.34 - 17.8571 = -3.5171 \][/tex]

From logarithms, we know that:
[tex]\[ k = 10^{\log k} = 10^{-3.5171} \approx 3.843628408177594 \text{ s}^{-1}\][/tex]

Thus, the rate constant at 700 K is approximately:
[tex]\[ k \approx 3.843628 \text{ s}^{-1} \][/tex]

### (iii) Calculate the Frequency Factor, [tex]\( A \)[/tex]

From the provided equation:
[tex]\[ \log A = 14.34 \][/tex]

Taking the inverse logarithm:
[tex]\[ A = 10^{14.34} \approx 218776162394955.2 \text{ s}^{-1} \][/tex]

Thus, the frequency factor [tex]\( A \)[/tex] is:
[tex]\[ A = 2.187761623949552 \times 10^{14} \text{ s}^{-1} \][/tex]

### Summary of Results:
(i) The activation energy ([tex]\( E_a \)[/tex]) is 239285.0 J/mol.

(ii) The rate constant ([tex]\( k \)[/tex]) at 700 K is approximately 3.843628 s[tex]\(^{-1}\)[/tex].

(iii) The frequency factor ([tex]\( A \)[/tex]) is [tex]\( 2.187761623949552 \times 10^{14} \text{ s}^{-1} \)[/tex].

These are the final answers to the given question.