Discover new information and insights with the help of IDNLearn.com. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To determine the order of the reaction, we need to use the times for the reaction to reach 50% completion at different initial pressures.
Given data:
- [tex]\( t_1 = 108 \)[/tex] seconds for 50% completion at [tex]\( P_1 = 336 \)[/tex] mm Hg
- [tex]\( t_2 = 147 \)[/tex] seconds for 50% completion at [tex]\( P_2 = 288 \)[/tex] mm Hg
For a reaction of order [tex]\( n \)[/tex], the relationship between half-life and initial pressure is given by:
[tex]\[ \left(\frac{t_1}{t_2}\right) = \left(\frac{P_2}{P_1}\right)^{n-1} \][/tex]
Rearranging the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n - 1 = \frac{\log(t_1/t_2)}{\log(P_2/P_1)} \][/tex]
[tex]\[ n = 1 + \frac{\log(t_1/t_2)}{\log(P_2/P_1)} \][/tex]
### Step-by-step solution:
1. Compute the ratio of times:
[tex]\[ \frac{t_1}{t_2} = \frac{108}{147} \approx 0.7347 \][/tex]
2. Compute the ratio of pressures:
[tex]\[ \frac{P_2}{P_1} = \frac{288}{336} \approx 0.8571 \][/tex]
3. Calculate the logarithm of the time ratio:
[tex]\[ \log(t_1/t_2) = \log(0.7347) \approx -0.1332 \][/tex]
4. Calculate the logarithm of the pressure ratio:
[tex]\[ \log(P_2/P_1) = \log(0.8571) \approx -0.0674 \][/tex]
5. Compute the order of the reaction [tex]\( n \)[/tex]:
[tex]\[ n = 1 + \frac{\log(t_1/t_2)}{\log(P_2/P_1)} \][/tex]
[tex]\[ n = 1 + \frac{-0.1332}{-0.0674} \][/tex]
[tex]\[ n = 1 + 1.9758 \][/tex]
[tex]\[ n \approx 2.976 \][/tex]
Given the result from our calculations, the order of the reaction is remarkably close to an integer value.
Therefore, the order of the reaction is 3.
Given data:
- [tex]\( t_1 = 108 \)[/tex] seconds for 50% completion at [tex]\( P_1 = 336 \)[/tex] mm Hg
- [tex]\( t_2 = 147 \)[/tex] seconds for 50% completion at [tex]\( P_2 = 288 \)[/tex] mm Hg
For a reaction of order [tex]\( n \)[/tex], the relationship between half-life and initial pressure is given by:
[tex]\[ \left(\frac{t_1}{t_2}\right) = \left(\frac{P_2}{P_1}\right)^{n-1} \][/tex]
Rearranging the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n - 1 = \frac{\log(t_1/t_2)}{\log(P_2/P_1)} \][/tex]
[tex]\[ n = 1 + \frac{\log(t_1/t_2)}{\log(P_2/P_1)} \][/tex]
### Step-by-step solution:
1. Compute the ratio of times:
[tex]\[ \frac{t_1}{t_2} = \frac{108}{147} \approx 0.7347 \][/tex]
2. Compute the ratio of pressures:
[tex]\[ \frac{P_2}{P_1} = \frac{288}{336} \approx 0.8571 \][/tex]
3. Calculate the logarithm of the time ratio:
[tex]\[ \log(t_1/t_2) = \log(0.7347) \approx -0.1332 \][/tex]
4. Calculate the logarithm of the pressure ratio:
[tex]\[ \log(P_2/P_1) = \log(0.8571) \approx -0.0674 \][/tex]
5. Compute the order of the reaction [tex]\( n \)[/tex]:
[tex]\[ n = 1 + \frac{\log(t_1/t_2)}{\log(P_2/P_1)} \][/tex]
[tex]\[ n = 1 + \frac{-0.1332}{-0.0674} \][/tex]
[tex]\[ n = 1 + 1.9758 \][/tex]
[tex]\[ n \approx 2.976 \][/tex]
Given the result from our calculations, the order of the reaction is remarkably close to an integer value.
Therefore, the order of the reaction is 3.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.