Discover new perspectives and gain insights with IDNLearn.com. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To prove that [tex]\( f: \mathbb{R} \rightarrow \mathbb{R} \)[/tex] defined by [tex]\( f(x) = 2x - 3 \)[/tex] is a bijection, we need to show two properties: injectivity (one-to-one) and surjectivity (onto). Then, we will find the inverse function. Let's start with the proofs:
### Injectivity:
A function is injective if [tex]\( f(x_1) = f(x_2) \)[/tex] implies [tex]\( x_1 = x_2 \)[/tex].
1. Start with the assumption that [tex]\( f(x_1) = f(x_2) \)[/tex].
2. Using the definition of [tex]\( f \)[/tex], we get:
[tex]\[ 2x_1 - 3 = 2x_2 - 3 \][/tex]
3. Subtract [tex]\(-3\)[/tex] from both sides:
[tex]\[ 2x_1 = 2x_2 \][/tex]
4. Divide both sides by 2:
[tex]\[ x_1 = x_2 \][/tex]
Since [tex]\( x_1 = x_2 \)[/tex], the function [tex]\( f \)[/tex] is injective.
### Surjectivity:
A function is surjective if for every element [tex]\( y \)[/tex] in the codomain [tex]\( \mathbb{R} \)[/tex], there exists an element [tex]\( x \)[/tex] in the domain [tex]\( \mathbb{R} \)[/tex] such that [tex]\( f(x) = y \)[/tex].
1. Let [tex]\( y \)[/tex] be an arbitrary element in [tex]\( \mathbb{R} \)[/tex].
2. We need to find [tex]\( x \)[/tex] such that:
[tex]\[ f(x) = y \implies 2x - 3 = y \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x = y + 3 \implies x = \frac{y + 3}{2} \][/tex]
Since [tex]\( x = \frac{y + 3}{2} \)[/tex] is a real number for any [tex]\( y \in \mathbb{R} \)[/tex], [tex]\( f \)[/tex] is surjective.
### Conclusion:
Because [tex]\( f \)[/tex] is both injective and surjective, [tex]\( f \)[/tex] is bijective.
### Finding the Inverse:
To find the inverse function [tex]\( f^{-1}(y) \)[/tex]:
1. Start with the equation for [tex]\( f(x) \)[/tex]:
[tex]\[ y = 2x - 3 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ 2x = y + 3 \implies x = \frac{y + 3}{2} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(y) = \frac{y + 3}{2} \][/tex]
In summary, the function [tex]\( f(x) = 2x - 3 \)[/tex] is a bijection with its inverse given by [tex]\( f^{-1}(y) = \frac{y + 3}{2} \)[/tex].
### Injectivity:
A function is injective if [tex]\( f(x_1) = f(x_2) \)[/tex] implies [tex]\( x_1 = x_2 \)[/tex].
1. Start with the assumption that [tex]\( f(x_1) = f(x_2) \)[/tex].
2. Using the definition of [tex]\( f \)[/tex], we get:
[tex]\[ 2x_1 - 3 = 2x_2 - 3 \][/tex]
3. Subtract [tex]\(-3\)[/tex] from both sides:
[tex]\[ 2x_1 = 2x_2 \][/tex]
4. Divide both sides by 2:
[tex]\[ x_1 = x_2 \][/tex]
Since [tex]\( x_1 = x_2 \)[/tex], the function [tex]\( f \)[/tex] is injective.
### Surjectivity:
A function is surjective if for every element [tex]\( y \)[/tex] in the codomain [tex]\( \mathbb{R} \)[/tex], there exists an element [tex]\( x \)[/tex] in the domain [tex]\( \mathbb{R} \)[/tex] such that [tex]\( f(x) = y \)[/tex].
1. Let [tex]\( y \)[/tex] be an arbitrary element in [tex]\( \mathbb{R} \)[/tex].
2. We need to find [tex]\( x \)[/tex] such that:
[tex]\[ f(x) = y \implies 2x - 3 = y \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x = y + 3 \implies x = \frac{y + 3}{2} \][/tex]
Since [tex]\( x = \frac{y + 3}{2} \)[/tex] is a real number for any [tex]\( y \in \mathbb{R} \)[/tex], [tex]\( f \)[/tex] is surjective.
### Conclusion:
Because [tex]\( f \)[/tex] is both injective and surjective, [tex]\( f \)[/tex] is bijective.
### Finding the Inverse:
To find the inverse function [tex]\( f^{-1}(y) \)[/tex]:
1. Start with the equation for [tex]\( f(x) \)[/tex]:
[tex]\[ y = 2x - 3 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ 2x = y + 3 \implies x = \frac{y + 3}{2} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(y) = \frac{y + 3}{2} \][/tex]
In summary, the function [tex]\( f(x) = 2x - 3 \)[/tex] is a bijection with its inverse given by [tex]\( f^{-1}(y) = \frac{y + 3}{2} \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.