From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To determine how long it will take for a [tex]$3000 investment to grow to $[/tex]13,848 at an annual rate of 8%, with interest compounded semiannually, we will follow the compound interest formula and solve for the time.
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where:
- [tex]\( A \)[/tex] is the final amount ([tex]$13,848). - \( P \) is the principal amount ($[/tex]3000).
- [tex]\( r \)[/tex] is the annual interest rate (0.08).
- [tex]\( n \)[/tex] is the number of times interest is compounded per year (2, since it is semiannually).
- [tex]\( t \)[/tex] is the time in years that we need to find.
First, let's rearrange the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ \left(1 + \frac{r}{n}\right)^{nt} = \frac{A}{P} \][/tex]
Take the natural logarithm (ln) of both sides:
[tex]\[ \ln\left(\left(1 + \frac{r}{n}\right)^{nt}\right) = \ln\left(\frac{A}{P}\right) \][/tex]
Use the properties of logarithms to bring the exponent [tex]\( nt \)[/tex] down:
[tex]\[ nt \cdot \ln\left(1 + \frac{r}{n}\right) = \ln\left(\frac{A}{P}\right) \][/tex]
Now, solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{A}{P}\right)}{n \cdot \ln\left(1 + \frac{r}{n}\right)} \][/tex]
Substitute the values [tex]\( A = 13848 \)[/tex], [tex]\( P = 3000 \)[/tex], [tex]\( r = 0.08 \)[/tex], and [tex]\( n = 2 \)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{13848}{3000}\right)}{2 \cdot \ln\left(1 + \frac{0.08}{2}\right)} \][/tex]
Calculate the numerator:
[tex]\[ \ln\left(\frac{13848}{3000}\right) = \ln(4.616) \][/tex]
Calculate the denominator:
[tex]\[ 2 \cdot \ln\left(1 + \frac{0.08}{2}\right) = 2 \cdot \ln(1.04) \][/tex]
Putting this into the fraction:
[tex]\[ t = \frac{\ln(4.616)}{2 \cdot \ln(1.04)} \][/tex]
Using the natural logarithm values:
[tex]\[ \ln(4.616) \approx 1.529 \][/tex]
[tex]\[ \ln(1.04) \approx 0.0392 \][/tex]
Calculate the denominator:
[tex]\[ 2 \cdot 0.0392 = 0.0784 \][/tex]
Now, divide the values:
[tex]\[ t = \frac{1.529}{0.0784} \approx 19.50 \][/tex]
Therefore, the number of years it will take for the investment to grow to $13,848 is approximately 19.50 years, rounded to the nearest hundredth.
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where:
- [tex]\( A \)[/tex] is the final amount ([tex]$13,848). - \( P \) is the principal amount ($[/tex]3000).
- [tex]\( r \)[/tex] is the annual interest rate (0.08).
- [tex]\( n \)[/tex] is the number of times interest is compounded per year (2, since it is semiannually).
- [tex]\( t \)[/tex] is the time in years that we need to find.
First, let's rearrange the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ \left(1 + \frac{r}{n}\right)^{nt} = \frac{A}{P} \][/tex]
Take the natural logarithm (ln) of both sides:
[tex]\[ \ln\left(\left(1 + \frac{r}{n}\right)^{nt}\right) = \ln\left(\frac{A}{P}\right) \][/tex]
Use the properties of logarithms to bring the exponent [tex]\( nt \)[/tex] down:
[tex]\[ nt \cdot \ln\left(1 + \frac{r}{n}\right) = \ln\left(\frac{A}{P}\right) \][/tex]
Now, solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{A}{P}\right)}{n \cdot \ln\left(1 + \frac{r}{n}\right)} \][/tex]
Substitute the values [tex]\( A = 13848 \)[/tex], [tex]\( P = 3000 \)[/tex], [tex]\( r = 0.08 \)[/tex], and [tex]\( n = 2 \)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{13848}{3000}\right)}{2 \cdot \ln\left(1 + \frac{0.08}{2}\right)} \][/tex]
Calculate the numerator:
[tex]\[ \ln\left(\frac{13848}{3000}\right) = \ln(4.616) \][/tex]
Calculate the denominator:
[tex]\[ 2 \cdot \ln\left(1 + \frac{0.08}{2}\right) = 2 \cdot \ln(1.04) \][/tex]
Putting this into the fraction:
[tex]\[ t = \frac{\ln(4.616)}{2 \cdot \ln(1.04)} \][/tex]
Using the natural logarithm values:
[tex]\[ \ln(4.616) \approx 1.529 \][/tex]
[tex]\[ \ln(1.04) \approx 0.0392 \][/tex]
Calculate the denominator:
[tex]\[ 2 \cdot 0.0392 = 0.0784 \][/tex]
Now, divide the values:
[tex]\[ t = \frac{1.529}{0.0784} \approx 19.50 \][/tex]
Therefore, the number of years it will take for the investment to grow to $13,848 is approximately 19.50 years, rounded to the nearest hundredth.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.