Join the IDNLearn.com community and start finding the answers you need today. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Sure, I'll guide you through solving for [tex]\( x \)[/tex] in the given system of linear equations using Cramer's Rule step by step.
### Step 1: Identify the Coefficients and Constants
First, let's identify the coefficients of [tex]\( x, y, z \)[/tex] and the constants on the right side of the equations:
[tex]\[ \begin{array}{l} x - 3y + 2z = 1 \quad \text{(Equation 1)} \\ 3x + 4y - 5z = -2 \quad \text{(Equation 2)} \\ 4x + y + z = 7 \quad \text{(Equation 3)} \end{array} \][/tex]
So, we have:
[tex]\[ \begin{array}{c|ccc|c} \text{Equation} & x & y & z & \text{Constant} \\ \hline 1 & 1 & -3 & 2 & 1 \\ 2 & 3 & 4 & -5 & -2 \\ 3 & 4 & 1 & 1 & 7 \\ \end{array} \][/tex]
### Step 2: Form the Coefficient Matrix [tex]\( D \)[/tex]
The coefficient matrix [tex]\( D \)[/tex] is:
[tex]\[ D = \begin{vmatrix} 1 & -3 & 2 \\ 3 & 4 & -5 \\ 4 & 1 & 1 \end{vmatrix} \][/tex]
### Step 3: Form Matrices [tex]\( D_x, D_y, \)[/tex] and [tex]\( D_z \)[/tex]
To solve for [tex]\( x \)[/tex], we need matrix [tex]\( D_x \)[/tex], which is formed by replacing the [tex]\( x \)[/tex]-column in [tex]\( D \)[/tex] with the constants:
[tex]\[ D_x = \begin{vmatrix} 1 & -3 & 2 \\ -2 & 4 & -5 \\ 7 & 1 & 1 \end{vmatrix} \][/tex]
### Step 4: Compute Determinants of [tex]\( D \)[/tex] and [tex]\( D_x \)[/tex]
The determinant of any [tex]\( 3 \times 3 \)[/tex] matrix [tex]\( \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \)[/tex] is calculated as:
[tex]\[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \][/tex]
Thus for [tex]\( D \)[/tex]:
[tex]\[ D = \begin{vmatrix} 1 & -3 & 2 \\ 3 & 4 & -5 \\ 4 & 1 & 1 \end{vmatrix} = 1(4 \cdot 1 - (-5) \cdot 1) - (-3)(3 \cdot 1 - (-5) \cdot 4) + 2(3 \cdot 1 - 4 \cdot 4) = 1(4 + 5) + 3(3 + 20) + 2(3 - 16) = 1 \cdot 9 + 3 \cdot 23 + 2 \cdot (-13) = 9 + 69 - 26 = 52 \][/tex]
For [tex]\( D_x \)[/tex]:
[tex]\[ D_x = \begin{vmatrix} 1 & -3 & 2 \\ -2 & 4 & -5 \\ 7 & 1 & 1 \end{vmatrix} = 1((4 \cdot 1) - (-5 \cdot 1)) - (-3)((-2 \cdot 1) - (-5 \cdot 7)) + 2((-2 \cdot 1) - (4 \cdot 7)) = 1(4 + 5) + 3(2 + 35) + 2((-2) - 28) = 9 + 111 - 60 = 60 \][/tex]
### Step 5: Apply Cramer's Rule to Determine [tex]\( x \)[/tex]
According to Cramer's Rule:
[tex]\[ x = \frac{D_x}{D} \][/tex]
So,
[tex]\[ x = \frac{48}{52} = \frac{12}{13} \approx 0.923 \][/tex]
Thus, the value of [tex]\( x \)[/tex] in the solution to the system of equations is approximately [tex]\( 0.923 \)[/tex].
### Step 1: Identify the Coefficients and Constants
First, let's identify the coefficients of [tex]\( x, y, z \)[/tex] and the constants on the right side of the equations:
[tex]\[ \begin{array}{l} x - 3y + 2z = 1 \quad \text{(Equation 1)} \\ 3x + 4y - 5z = -2 \quad \text{(Equation 2)} \\ 4x + y + z = 7 \quad \text{(Equation 3)} \end{array} \][/tex]
So, we have:
[tex]\[ \begin{array}{c|ccc|c} \text{Equation} & x & y & z & \text{Constant} \\ \hline 1 & 1 & -3 & 2 & 1 \\ 2 & 3 & 4 & -5 & -2 \\ 3 & 4 & 1 & 1 & 7 \\ \end{array} \][/tex]
### Step 2: Form the Coefficient Matrix [tex]\( D \)[/tex]
The coefficient matrix [tex]\( D \)[/tex] is:
[tex]\[ D = \begin{vmatrix} 1 & -3 & 2 \\ 3 & 4 & -5 \\ 4 & 1 & 1 \end{vmatrix} \][/tex]
### Step 3: Form Matrices [tex]\( D_x, D_y, \)[/tex] and [tex]\( D_z \)[/tex]
To solve for [tex]\( x \)[/tex], we need matrix [tex]\( D_x \)[/tex], which is formed by replacing the [tex]\( x \)[/tex]-column in [tex]\( D \)[/tex] with the constants:
[tex]\[ D_x = \begin{vmatrix} 1 & -3 & 2 \\ -2 & 4 & -5 \\ 7 & 1 & 1 \end{vmatrix} \][/tex]
### Step 4: Compute Determinants of [tex]\( D \)[/tex] and [tex]\( D_x \)[/tex]
The determinant of any [tex]\( 3 \times 3 \)[/tex] matrix [tex]\( \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \)[/tex] is calculated as:
[tex]\[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \][/tex]
Thus for [tex]\( D \)[/tex]:
[tex]\[ D = \begin{vmatrix} 1 & -3 & 2 \\ 3 & 4 & -5 \\ 4 & 1 & 1 \end{vmatrix} = 1(4 \cdot 1 - (-5) \cdot 1) - (-3)(3 \cdot 1 - (-5) \cdot 4) + 2(3 \cdot 1 - 4 \cdot 4) = 1(4 + 5) + 3(3 + 20) + 2(3 - 16) = 1 \cdot 9 + 3 \cdot 23 + 2 \cdot (-13) = 9 + 69 - 26 = 52 \][/tex]
For [tex]\( D_x \)[/tex]:
[tex]\[ D_x = \begin{vmatrix} 1 & -3 & 2 \\ -2 & 4 & -5 \\ 7 & 1 & 1 \end{vmatrix} = 1((4 \cdot 1) - (-5 \cdot 1)) - (-3)((-2 \cdot 1) - (-5 \cdot 7)) + 2((-2 \cdot 1) - (4 \cdot 7)) = 1(4 + 5) + 3(2 + 35) + 2((-2) - 28) = 9 + 111 - 60 = 60 \][/tex]
### Step 5: Apply Cramer's Rule to Determine [tex]\( x \)[/tex]
According to Cramer's Rule:
[tex]\[ x = \frac{D_x}{D} \][/tex]
So,
[tex]\[ x = \frac{48}{52} = \frac{12}{13} \approx 0.923 \][/tex]
Thus, the value of [tex]\( x \)[/tex] in the solution to the system of equations is approximately [tex]\( 0.923 \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.