Get expert insights and community support for your questions on IDNLearn.com. Get the information you need from our experts, who provide reliable and detailed answers to all your questions.
Sagot :
Sure, let's solve the given problem step-by-step.
First, we need to solve the equation:
[tex]\[ x^2 + \frac{1}{25 x^2} = 8 \frac{3}{5} \][/tex]
1. Convert the mixed fraction to an improper fraction:
[tex]\[ 8 \frac{3}{5} = \frac{8 \times 5 + 3}{5} = \frac{40 + 3}{5} = \frac{43}{5} \][/tex]
So, the equation becomes:
[tex]\[ x^2 + \frac{1}{25 x^2} = \frac{43}{5} \][/tex]
2. Multiply both sides by 25x² to clear the fraction:
[tex]\[ 25 x^2 \left( x^2 + \frac{1}{25 x^2} \right) = 25 x^2 \cdot \frac{43}{5} \][/tex]
[tex]\[ 25 x^4 + 1 = \frac{43}{5} \cdot 25 x^2 \][/tex]
[tex]\[ 25 x^4 + 1 = 215 x^2 \][/tex]
3. Rearrange the equation to standard quadratic form:
[tex]\[ 25 x^4 - 215 x^2 + 1 = 0 \][/tex]
Let [tex]\( y = x^2 \)[/tex]. The equation becomes:
[tex]\[ 25 y^2 - 215 y + 1 = 0 \][/tex]
This is a quadratic equation in [tex]\( y \)[/tex]. We can solve it using the quadratic formula [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 25 \)[/tex], [tex]\( b = -215 \)[/tex], and [tex]\( c = 1 \)[/tex]:
[tex]\[ y = \frac{-(-215) \pm \sqrt{(-215)^2 - 4 \cdot 25 \cdot 1}}{2 \cdot 25} \][/tex]
[tex]\[ y = \frac{215 \pm \sqrt{46225 - 100}}{50} \][/tex]
[tex]\[ y = \frac{215 \pm \sqrt{46125}}{50} \][/tex]
[tex]\[ y = \frac{215 \pm 214.85}{50} \][/tex]
So, we get two solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{215 + 214.85}{50} = \frac{429.85}{50} = 8.597 \][/tex]
[tex]\[ y_2 = \frac{215 - 214.85}{50} = \frac{0.15}{50} = 0.003 \][/tex]
Recall that [tex]\( y = x^2 \)[/tex], so we have:
[tex]\( x^2 = 8.597 \)[/tex] [tex]\(\text{or}\)[/tex] [tex]\( x^2 = 0.003 \)[/tex].
Thus, we find [tex]\( x \)[/tex] as:
[tex]\[ x_1 = \sqrt{8.597} \approx 2.931 \][/tex]
[tex]\[ x_2 = -\sqrt{8.597} \approx -2.931 \][/tex]
[tex]\[ x_3 = \sqrt{0.003} \approx 0.068 \][/tex]
[tex]\[ x_4 = -\sqrt{0.003} \approx -0.068 \][/tex]
4. Calculate the value of [tex]\( x^3 + \frac{1}{125 x^3} \)[/tex] for each solution:
For [tex]\( x_1 \approx 2.931 \)[/tex]:
[tex]\[ x_1^3 + \frac{1}{125 x_1^3} \approx 25.2 \][/tex]
For [tex]\( x_2 \approx -2.931 \)[/tex]:
[tex]\[ x_2^3 + \frac{1}{125 x_2^3} \approx -25.2 \][/tex]
For [tex]\( x_3 \approx 0.068 \)[/tex]:
[tex]\[ x_3^3 + \frac{1}{125 x_3^3} \approx 25.2 \][/tex]
For [tex]\( x_4 \approx -0.068 \)[/tex]:
[tex]\[ x_4^3 + \frac{1}{125 x_4^3} \approx -25.2 \][/tex]
Thus, the values of [tex]\( x^3 + \frac{1}{125 x^3} \)[/tex] for the given solutions are approximately:
[tex]\[ 25.2, -25.2, 25.2, -25.2 \][/tex]
First, we need to solve the equation:
[tex]\[ x^2 + \frac{1}{25 x^2} = 8 \frac{3}{5} \][/tex]
1. Convert the mixed fraction to an improper fraction:
[tex]\[ 8 \frac{3}{5} = \frac{8 \times 5 + 3}{5} = \frac{40 + 3}{5} = \frac{43}{5} \][/tex]
So, the equation becomes:
[tex]\[ x^2 + \frac{1}{25 x^2} = \frac{43}{5} \][/tex]
2. Multiply both sides by 25x² to clear the fraction:
[tex]\[ 25 x^2 \left( x^2 + \frac{1}{25 x^2} \right) = 25 x^2 \cdot \frac{43}{5} \][/tex]
[tex]\[ 25 x^4 + 1 = \frac{43}{5} \cdot 25 x^2 \][/tex]
[tex]\[ 25 x^4 + 1 = 215 x^2 \][/tex]
3. Rearrange the equation to standard quadratic form:
[tex]\[ 25 x^4 - 215 x^2 + 1 = 0 \][/tex]
Let [tex]\( y = x^2 \)[/tex]. The equation becomes:
[tex]\[ 25 y^2 - 215 y + 1 = 0 \][/tex]
This is a quadratic equation in [tex]\( y \)[/tex]. We can solve it using the quadratic formula [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 25 \)[/tex], [tex]\( b = -215 \)[/tex], and [tex]\( c = 1 \)[/tex]:
[tex]\[ y = \frac{-(-215) \pm \sqrt{(-215)^2 - 4 \cdot 25 \cdot 1}}{2 \cdot 25} \][/tex]
[tex]\[ y = \frac{215 \pm \sqrt{46225 - 100}}{50} \][/tex]
[tex]\[ y = \frac{215 \pm \sqrt{46125}}{50} \][/tex]
[tex]\[ y = \frac{215 \pm 214.85}{50} \][/tex]
So, we get two solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{215 + 214.85}{50} = \frac{429.85}{50} = 8.597 \][/tex]
[tex]\[ y_2 = \frac{215 - 214.85}{50} = \frac{0.15}{50} = 0.003 \][/tex]
Recall that [tex]\( y = x^2 \)[/tex], so we have:
[tex]\( x^2 = 8.597 \)[/tex] [tex]\(\text{or}\)[/tex] [tex]\( x^2 = 0.003 \)[/tex].
Thus, we find [tex]\( x \)[/tex] as:
[tex]\[ x_1 = \sqrt{8.597} \approx 2.931 \][/tex]
[tex]\[ x_2 = -\sqrt{8.597} \approx -2.931 \][/tex]
[tex]\[ x_3 = \sqrt{0.003} \approx 0.068 \][/tex]
[tex]\[ x_4 = -\sqrt{0.003} \approx -0.068 \][/tex]
4. Calculate the value of [tex]\( x^3 + \frac{1}{125 x^3} \)[/tex] for each solution:
For [tex]\( x_1 \approx 2.931 \)[/tex]:
[tex]\[ x_1^3 + \frac{1}{125 x_1^3} \approx 25.2 \][/tex]
For [tex]\( x_2 \approx -2.931 \)[/tex]:
[tex]\[ x_2^3 + \frac{1}{125 x_2^3} \approx -25.2 \][/tex]
For [tex]\( x_3 \approx 0.068 \)[/tex]:
[tex]\[ x_3^3 + \frac{1}{125 x_3^3} \approx 25.2 \][/tex]
For [tex]\( x_4 \approx -0.068 \)[/tex]:
[tex]\[ x_4^3 + \frac{1}{125 x_4^3} \approx -25.2 \][/tex]
Thus, the values of [tex]\( x^3 + \frac{1}{125 x^3} \)[/tex] for the given solutions are approximately:
[tex]\[ 25.2, -25.2, 25.2, -25.2 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.