IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
To determine the equation of an exponential function given a set of data points, we follow a systematic approach. The data is provided as follows:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 7 & 1250 \\ \hline 14 & 500 \\ \hline 21 & 200 \\ \hline 28 & 80 \\ \hline 35 & 32 \\ \hline \end{array} \][/tex]
The goal is to find an exponential function of the form [tex]\( y = ab^x \)[/tex].
### Step 1: Linearizing the Exponential Relation
Firstly, we take the natural logarithm of the y-values to transform the exponential relation into a linear form:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & \log(y) \\ \hline 7 & 1250 & 7.1309 \\ \hline 14 & 500 & 6.2146 \\ \hline 21 & 200 & 5.2983 \\ \hline 28 & 80 & 4.3820 \\ \hline 35 & 32 & 3.4657 \\ \hline \end{array} \][/tex]
### Step 2: Setting Up the Linear Regression
We assume a linear relationship in the form:
[tex]\[ \log(y) = \log(a) + x \cdot \log(b) \][/tex]
Here, the x-values remain the same, and the y-values are now the natural logarithms of the original y-values.
### Step 3: Performing Linear Regression
Using the linearized form [tex]\(\log(y) = m \cdot x + c\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(c\)[/tex] is the y-intercept:
From our calculations, we find:
[tex]\[ m = -0.1309 \][/tex]
[tex]\[ c = 8.0472 \][/tex]
### Step 4: Back-Transforming to Exponential Form
Solving for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ \log(b) = m \][/tex]
[tex]\[ \log(a) = c \][/tex]
Thus:
[tex]\[ b = e^{\log(b)} = e^{-0.1309} \approx 0.8773 \][/tex]
[tex]\[ a = e^{\log(a)} = e^{8.0472} \approx 3125 \][/tex]
### Step 5: Writing the Final Equation
With our derived constants [tex]\(a\)[/tex] and [tex]\(b\)[/tex], we can write the exponential function as:
[tex]\[ y = 3125 \cdot (0.8773)^x \][/tex]
This is the exponential function that fits the given data points accurately.
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 7 & 1250 \\ \hline 14 & 500 \\ \hline 21 & 200 \\ \hline 28 & 80 \\ \hline 35 & 32 \\ \hline \end{array} \][/tex]
The goal is to find an exponential function of the form [tex]\( y = ab^x \)[/tex].
### Step 1: Linearizing the Exponential Relation
Firstly, we take the natural logarithm of the y-values to transform the exponential relation into a linear form:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & \log(y) \\ \hline 7 & 1250 & 7.1309 \\ \hline 14 & 500 & 6.2146 \\ \hline 21 & 200 & 5.2983 \\ \hline 28 & 80 & 4.3820 \\ \hline 35 & 32 & 3.4657 \\ \hline \end{array} \][/tex]
### Step 2: Setting Up the Linear Regression
We assume a linear relationship in the form:
[tex]\[ \log(y) = \log(a) + x \cdot \log(b) \][/tex]
Here, the x-values remain the same, and the y-values are now the natural logarithms of the original y-values.
### Step 3: Performing Linear Regression
Using the linearized form [tex]\(\log(y) = m \cdot x + c\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(c\)[/tex] is the y-intercept:
From our calculations, we find:
[tex]\[ m = -0.1309 \][/tex]
[tex]\[ c = 8.0472 \][/tex]
### Step 4: Back-Transforming to Exponential Form
Solving for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ \log(b) = m \][/tex]
[tex]\[ \log(a) = c \][/tex]
Thus:
[tex]\[ b = e^{\log(b)} = e^{-0.1309} \approx 0.8773 \][/tex]
[tex]\[ a = e^{\log(a)} = e^{8.0472} \approx 3125 \][/tex]
### Step 5: Writing the Final Equation
With our derived constants [tex]\(a\)[/tex] and [tex]\(b\)[/tex], we can write the exponential function as:
[tex]\[ y = 3125 \cdot (0.8773)^x \][/tex]
This is the exponential function that fits the given data points accurately.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.