From simple questions to complex issues, IDNLearn.com has the answers you need. Ask any question and get a detailed, reliable answer from our community of experts.

A spinner is divided into two equal parts, one red and one blue. The set of possible outcomes when the spinner is spun twice is [tex]$S=\{RR, RB, BR, BB\}$[/tex]. Let [tex]$X$[/tex] represent the number of times blue occurs. Which of the following is the probability distribution, [tex][tex]$P_X(x)$[/tex][/tex]?

\begin{tabular}{|c|c|}
\hline
[tex]$X$[/tex] & [tex]$P_X(x)$[/tex] \\
\hline
0 & 0.25 \\
\hline
1 & 0.5 \\
\hline
2 & 0.25 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex][tex]$X$[/tex][/tex] & [tex]$P_X(x)$[/tex] \\
\hline
0 & 0.33 \\
\hline
1 & 0.33 \\
\hline
2 & 0.33 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$X$[/tex] & [tex][tex]$P_X(x)$[/tex][/tex] \\
\hline
0 & 0.5 \\
\hline
1 & 0.5 \\
\hline
2 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$X$[/tex] & [tex]$P_X(x)$[/tex] \\
\hline
0 & 0 \\
\hline
1 & 0 \\
\hline
2 & 0 \\
\hline
\end{tabular}


Sagot :

Let us analyze the problem and find the correct probability distribution.

We are given that a spinner is divided into two equal parts: one red (R) and one blue (B). The spinner is spun twice, and the set of all possible outcomes is:
[tex]\[ S = \{RR, RB, BR, BB\} \][/tex]

Next, we define the random variable [tex]\( X \)[/tex] which represents the number of times blue (B) occurs in these two spins. The possible values for [tex]\( X \)[/tex] are 0, 1, or 2.

Now let's consider each possible value of [tex]\( X \)[/tex]:
1. [tex]\( X = 0 \)[/tex]: The outcome must have zero blue faces. The only outcome in [tex]\( S \)[/tex] that fits this criterion is [tex]\( \{RR\} \)[/tex].

2. [tex]\( X = 1 \)[/tex]: The outcome must have one blue face. The outcomes in [tex]\( S \)[/tex] that fit this criterion are [tex]\( \{RB, BR\} \)[/tex].

3. [tex]\( X = 2 \)[/tex]: The outcome must have two blue faces. The only outcome in [tex]\( S \)[/tex] that fits this criterion is [tex]\( \{BB\} \)[/tex].

We now calculate the probability distributions for each value of [tex]\( X \)[/tex]:
1. Probability that [tex]\( X = 0 \)[/tex]:
[tex]\[ P(X = 0) = \frac{\text{Number of outcomes with 0 blue}}{\text{Total number of outcomes}} = \frac{1}{4} = 0.25 \][/tex]

2. Probability that [tex]\( X = 1 \)[/tex]:
[tex]\[ P(X = 1) = \frac{\text{Number of outcomes with 1 blue}}{\text{Total number of outcomes}} = \frac{2}{4} = 0.5 \][/tex]

3. Probability that [tex]\( X = 2 \)[/tex]:
[tex]\[ P(X = 2) = \frac{\text{Number of outcomes with 2 blue}}{\text{Total number of outcomes}} = \frac{1}{4} = 0.25 \][/tex]

From the calculations above, the probability distribution [tex]\( P_X(x) \)[/tex] can be summarized as:
[tex]\[ \begin{array}{|c|c|} \hline X & P_X(x) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]

Comparing this with the provided tables, we see that the correct table is:
[tex]\[ \begin{array}{|c|c|} \hline X & P_X(x) \\ \hline 0 & 0.25 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline \end{array} \][/tex]