Explore a world of knowledge and get your questions answered on IDNLearn.com. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
Certainly! Let's tackle the problem in two parts: proving the given differential equation for [tex]\( y \)[/tex] and then using that result to prove the analogous differential equation for [tex]\( z \)[/tex].
### Part 1: Proving [tex]\( \frac{d^2 y}{dx^2} + 36y = 18 \)[/tex] for [tex]\( y = \sin^2(3x) \)[/tex]
1. Define [tex]\( y \)[/tex]:
[tex]\[ y = \sin^2(3x) \][/tex]
2. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
Using the chain rule:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} [\sin^2(3x)] = 2 \sin(3x) \cdot \cos(3x) \cdot 3 = 6 \sin(3x) \cos(3x) \][/tex]
3. Simplify using a trigonometric identity:
Recall the double-angle identity: [tex]\( \sin(2A) = 2 \sin(A) \cos(A) \)[/tex]. Thus:
[tex]\[ 6 \sin(3x) \cos(3x) = 3 \sin(6x) \][/tex]
So:
[tex]\[ \frac{dy}{dx} = 3 \sin(6x) \][/tex]
4. Find the second derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{d}{dx} \left( 3 \sin(6x) \right) = 3 \cdot 6 \cos(6x) = 18 \cos(6x) \][/tex]
5. Construct and simplify the expression [tex]\( \frac{d^2 y}{dx^2} + 36y \)[/tex]:
[tex]\[ \frac{d^2 y}{dx^2} + 36y = 18 \cos(6x) + 36 \sin^2(3x) \][/tex]
6. Simplify the expression further:
Using the identity [tex]\( \sin^2(A) = \frac{1 - \cos(2A)}{2} \)[/tex]:
[tex]\[ \sin^2(3x) = \frac{1 - \cos(6x)}{2} \][/tex]
Therefore:
[tex]\[ 36 \sin^2(3x) = 36 \cdot \frac{1 - \cos(6x)}{2} = 18 - 18 \cos(6x) \][/tex]
7. Combine the terms:
[tex]\[ \frac{d^2 y}{dx^2} + 36y = 18 \cos(6x) + 18 - 18 \cos(6x) = 18 \][/tex]
Thus, we have shown:
[tex]\[ \frac{d^2 y}{dx^2} + 36y = 18 \][/tex]
### Part 2: Proving [tex]\( \frac{d^2 z}{dx^2} + 36z = 18 \)[/tex] for [tex]\( z = \cos^2(3x) \)[/tex]
1. Define [tex]\( z \)[/tex]:
[tex]\[ z = \cos^2(3x) \][/tex]
2. Find the first derivative of [tex]\( z \)[/tex] with respect to [tex]\( x \)[/tex]:
Using the chain rule:
[tex]\[ \frac{dz}{dx} = \frac{d}{dx} [\cos^2(3x)] = 2 \cos(3x) \cdot (-\sin(3x)) \cdot 3 = -6 \sin(3x) \cos(3x) \][/tex]
3. Simplify using a trigonometric identity:
Recall again the double-angle identity:
[tex]\[ -6 \sin(3x) \cos(3x) = -3 \sin(6x) \][/tex]
So:
[tex]\[ \frac{dz}{dx} = -3 \sin(6x) \][/tex]
4. Find the second derivative of [tex]\( z \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d^2 z}{dx^2} = \frac{d}{dx} \left( -3 \sin(6x) \right) = -3 \cdot 6 \cos(6x) = -18 \cos(6x) \][/tex]
5. Construct and simplify the expression [tex]\( \frac{d^2 z}{dx^2} + 36z \)[/tex]:
[tex]\[ \frac{d^2 z}{dx^2} + 36z = -18 \cos(6x) + 36 \cos^2(3x) \][/tex]
6. Simplify the expression further:
Using the identity [tex]\( \cos^2(A) = \frac{1 + \cos(2A)}{2} \)[/tex]:
[tex]\[ \cos^2(3x) = \frac{1 + \cos(6x)}{2} \][/tex]
Therefore:
[tex]\[ 36 \cos^2(3x) = 36 \cdot \frac{1 + \cos(6x)}{2} = 18 + 18 \cos(6x) \][/tex]
7. Combine the terms:
[tex]\[ \frac{d^2 z}{dx^2} + 36z = -18 \cos(6x) + 18 + 18 \cos(6x) = 18 \][/tex]
Thus, we have shown:
[tex]\[ \frac{d^2 z}{dx^2} + 36z = 18 \][/tex]
Hence, both differential equations are satisfactorily proven.
### Part 1: Proving [tex]\( \frac{d^2 y}{dx^2} + 36y = 18 \)[/tex] for [tex]\( y = \sin^2(3x) \)[/tex]
1. Define [tex]\( y \)[/tex]:
[tex]\[ y = \sin^2(3x) \][/tex]
2. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
Using the chain rule:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} [\sin^2(3x)] = 2 \sin(3x) \cdot \cos(3x) \cdot 3 = 6 \sin(3x) \cos(3x) \][/tex]
3. Simplify using a trigonometric identity:
Recall the double-angle identity: [tex]\( \sin(2A) = 2 \sin(A) \cos(A) \)[/tex]. Thus:
[tex]\[ 6 \sin(3x) \cos(3x) = 3 \sin(6x) \][/tex]
So:
[tex]\[ \frac{dy}{dx} = 3 \sin(6x) \][/tex]
4. Find the second derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{d}{dx} \left( 3 \sin(6x) \right) = 3 \cdot 6 \cos(6x) = 18 \cos(6x) \][/tex]
5. Construct and simplify the expression [tex]\( \frac{d^2 y}{dx^2} + 36y \)[/tex]:
[tex]\[ \frac{d^2 y}{dx^2} + 36y = 18 \cos(6x) + 36 \sin^2(3x) \][/tex]
6. Simplify the expression further:
Using the identity [tex]\( \sin^2(A) = \frac{1 - \cos(2A)}{2} \)[/tex]:
[tex]\[ \sin^2(3x) = \frac{1 - \cos(6x)}{2} \][/tex]
Therefore:
[tex]\[ 36 \sin^2(3x) = 36 \cdot \frac{1 - \cos(6x)}{2} = 18 - 18 \cos(6x) \][/tex]
7. Combine the terms:
[tex]\[ \frac{d^2 y}{dx^2} + 36y = 18 \cos(6x) + 18 - 18 \cos(6x) = 18 \][/tex]
Thus, we have shown:
[tex]\[ \frac{d^2 y}{dx^2} + 36y = 18 \][/tex]
### Part 2: Proving [tex]\( \frac{d^2 z}{dx^2} + 36z = 18 \)[/tex] for [tex]\( z = \cos^2(3x) \)[/tex]
1. Define [tex]\( z \)[/tex]:
[tex]\[ z = \cos^2(3x) \][/tex]
2. Find the first derivative of [tex]\( z \)[/tex] with respect to [tex]\( x \)[/tex]:
Using the chain rule:
[tex]\[ \frac{dz}{dx} = \frac{d}{dx} [\cos^2(3x)] = 2 \cos(3x) \cdot (-\sin(3x)) \cdot 3 = -6 \sin(3x) \cos(3x) \][/tex]
3. Simplify using a trigonometric identity:
Recall again the double-angle identity:
[tex]\[ -6 \sin(3x) \cos(3x) = -3 \sin(6x) \][/tex]
So:
[tex]\[ \frac{dz}{dx} = -3 \sin(6x) \][/tex]
4. Find the second derivative of [tex]\( z \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d^2 z}{dx^2} = \frac{d}{dx} \left( -3 \sin(6x) \right) = -3 \cdot 6 \cos(6x) = -18 \cos(6x) \][/tex]
5. Construct and simplify the expression [tex]\( \frac{d^2 z}{dx^2} + 36z \)[/tex]:
[tex]\[ \frac{d^2 z}{dx^2} + 36z = -18 \cos(6x) + 36 \cos^2(3x) \][/tex]
6. Simplify the expression further:
Using the identity [tex]\( \cos^2(A) = \frac{1 + \cos(2A)}{2} \)[/tex]:
[tex]\[ \cos^2(3x) = \frac{1 + \cos(6x)}{2} \][/tex]
Therefore:
[tex]\[ 36 \cos^2(3x) = 36 \cdot \frac{1 + \cos(6x)}{2} = 18 + 18 \cos(6x) \][/tex]
7. Combine the terms:
[tex]\[ \frac{d^2 z}{dx^2} + 36z = -18 \cos(6x) + 18 + 18 \cos(6x) = 18 \][/tex]
Thus, we have shown:
[tex]\[ \frac{d^2 z}{dx^2} + 36z = 18 \][/tex]
Hence, both differential equations are satisfactorily proven.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Accurate answers are just a click away at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.