IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Our platform is designed to provide quick and accurate answers to any questions you may have.

1. Find the equation of the plane passing through the points [tex]P(0,0,1)[/tex], [tex]Q(2,0,0)[/tex], and [tex]R(0,3,0)[/tex].

2. If [tex]B[/tex] is a square matrix such that [tex]B(B-1)=0[/tex], then using mathematical induction, prove that [tex](I+B)^n-I=\left(-1+2^n\right) B[/tex], where [tex]I[/tex] is the identity matrix of size equal to [tex]B[/tex].


Sagot :

Certainly! Let's go through each part of this question step-by-step.

---

### Part 1: Finding the Equation of the Plane

We need to find the equation of the plane passing through points [tex]\( P(0,0,1) \)[/tex], [tex]\( Q(2,0,0) \)[/tex], and [tex]\( R(0,3,0) \)[/tex].

1. Find two vectors in the plane:
- Vector [tex]\( \mathbf{PQ} \)[/tex] going from [tex]\( P \)[/tex] to [tex]\( Q \)[/tex]:
[tex]\[ \mathbf{PQ} = \mathbf{Q} - \mathbf{P} = (2,0,0) - (0,0,1) = (2,0,-1) \][/tex]
- Vector [tex]\( \mathbf{PR} \)[/tex] going from [tex]\( P \)[/tex] to [tex]\( R \)[/tex]:
[tex]\[ \mathbf{PR} = \mathbf{R} - \mathbf{P} = (0,3,0) - (0,0,1) = (0,3,-1) \][/tex]

2. Find the normal vector to the plane by taking the cross product of [tex]\( \mathbf{PQ} \)[/tex] and [tex]\( \mathbf{PR} \)[/tex]:
[tex]\[ \mathbf{n} = \mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 0 & 3 & -1 \\ \end{vmatrix} = \mathbf{i} (0 \cdot (-1) - 3 \cdot (-1)) - \mathbf{j} (2 \cdot (-1) - 0 \cdot (-1)) + \mathbf{k} (2 \cdot 3 - 0 \cdot 0) \][/tex]
Simplifying this, we get:
[tex]\[ \mathbf{n} = (0 + 3)\mathbf{i} + (2)\mathbf{j} + (6)\mathbf{k} = 3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k} = (3,2,6) \][/tex]

3. Form the equation of the plane:
The equation of a plane is given by:
[tex]\[ a x + b y + c z = d \][/tex]
where [tex]\( (a, b, c) \)[/tex] is the normal vector [tex]\( \mathbf{n} \)[/tex]. Using the normal vector [tex]\( (3,2,6) \)[/tex]:
[tex]\[ 3x + 2y + 6z = d \][/tex]

4. Find the constant [tex]\(d\)[/tex] by substituting one of the points on the plane, say [tex]\( P(0,0,1) \)[/tex], into the plane equation:
[tex]\[ 3(0) + 2(0) + 6(1) = d \implies 6 = d \][/tex]

Thus, the equation of the plane is:
[tex]\[ 3x + 2y + 6z = 6 \][/tex]

---

### Part 2: Proof by Mathematical Induction

We need to prove that if [tex]\( B \)[/tex] is a square matrix such that [tex]\( B(B-1)=0 \)[/tex], then [tex]\( (I+B)^n-I=(-1+2^n) B \)[/tex], where [tex]\( I \)[/tex] is the identity matrix of the same size as [tex]\( B \)[/tex].

#### Base Case (n = 1):

For [tex]\( n=1 \)[/tex]:
[tex]\[ (I+B)^1 - I = I + B - I = B \\ (-1 + 2^1)B = B \\ \) This satisfies the base case. #### Inductive Step: Assume that the statement holds for \( n = k \). That is: \[ (I+B)^k - I = (-1 + 2^k) B \][/tex]

We need to prove that the statement holds for [tex]\( n = k+1 \)[/tex]. Consider [tex]\( (I+B)^{k+1} \)[/tex]:
[tex]\[ (I+B)^{k+1} = (I+B)^k (I+B) \][/tex]
By the inductive hypothesis:
[tex]\[ (I+B)^k = I + (-1+2^k) B \rightarrow \text{Let this be } X \][/tex]
Then:
[tex]\[ (I + B)^{k+1} = (I + (-1 + 2^k) B) (I + B) = I + B + (-1 + 2^k) B + (-1 + 2^k) B^2 \][/tex]

Using the property [tex]\( B(B-1)=0 \)[/tex]:
[tex]\[ B^2 = B \][/tex]

So:
[tex]\[ (I + B)^{k+1} - I = B + (-1 + 2^k) B + (-1 + 2^k) B = B + (-1 + 2^k) B + (-1 + 2^k) B \][/tex]
Simplify and combine similar terms:
[tex]\[ B + (-1 + 2^k) B + (-1 + 2^k) B = B + (-1 + 2^k + 2^k) B = B + (2 \times 2^k - 1) B = B + (2^{k+1} - 1) B = (-1 + 2^{k+1}) B \][/tex]

Thus, the inductive step is proven and hence, the statement is true for all [tex]\( n \geq 1 \)[/tex]:
[tex]\[ (I+B)^n - I = (-1 + 2^n) B \][/tex]

This completes the proof using mathematical induction.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.