Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Find the answers you need quickly and accurately with help from our knowledgeable and experienced experts.
Sagot :
To prove that [tex]\( V_{xx} + V_{yy} + V_{zz} = f''(r) + \frac{2}{r} f'(r) \)[/tex] given [tex]\( V = f(r) \)[/tex] and [tex]\( r^2 = x^2 + y^2 + z^2 \)[/tex], we follow these steps:
1. Define [tex]\( r \)[/tex] in terms of [tex]\( x, y, \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ r^2 = x^2 + y^2 + z^2 \implies r = \sqrt{x^2 + y^2 + z^2} \][/tex]
2. Express [tex]\( V \)[/tex] as a function of [tex]\( r \)[/tex]:
[tex]\[ V = f(r) \][/tex]
3. Find the first and second derivatives of [tex]\( r \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial r}{\partial x} = \frac{x}{r} \][/tex]
[tex]\[ \frac{\partial^2 r}{\partial x^2} = \frac{r - x \frac{\partial r}{\partial x}}{r^2} = \frac{r - \frac{x^2}{r}}{r^2} = \frac{r^2 - x^2}{r^3} = \frac{y^2 + z^2}{r^3} \][/tex]
4. Use the chain rule to find the first and second derivatives of [tex]\( V \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ V_x = \frac{\partial V}{\partial x} = \frac{d f}{d r} \cdot \frac{\partial r}{\partial x} = f'(r) \cdot \frac{x}{r} \][/tex]
[tex]\[ V_{xx} = \frac{\partial}{\partial x} \left( f'(r) \cdot \frac{x}{r} \right) = f''(r) \cdot \left( \frac{x}{r} \right)^2 + f'(r) \cdot \frac{r^2 - x^2}{r^3} = f''(r) \frac{x^2}{r^2} + f'(r) \cdot \frac{y^2 + z^2}{r^3} \][/tex]
5. Find similar expressions for the second derivatives with respect to [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ V_{yy} = f''(r) \frac{y^2}{r^2} + f'(r) \cdot \frac{x^2 + z^2}{r^3} \][/tex]
[tex]\[ V_{zz} = f''(r) \frac{z^2}{r^2} + f'(r) \cdot \frac{x^2 + y^2}{r^3} \][/tex]
6. Sum the second partial derivatives to compute the Laplacian [tex]\( V_{xx} + V_{yy} + V_{zz} \)[/tex]:
[tex]\[ V_{xx} + V_{yy} + V_{zz} = f''(r) \left( \frac{x^2 + y^2 + z^2}{r^2} \right) + f'(r) \cdot \left( \frac{y^2 + z^2 + x^2 + z^2 + x^2 + y^2}{r^3} \right) \][/tex]
Simplify the terms:
[tex]\[ \frac{x^2 + y^2 + z^2}{r^2} = 1 \][/tex]
[tex]\[ \frac{2(x^2 + y^2 + z^2)}{r^3} = \frac{2r^2}{r^3} = \frac{2}{r} \][/tex]
7. Combine these results to get the final expression:
[tex]\[ V_{xx} + V_{yy} + V_{zz} = f''(r) \cdot 1 + f'(r) \cdot \frac{2}{r} = f''(r) + \frac{2}{r} f'(r) \][/tex]
Hence, we have proven that:
[tex]\[ V_{xx} + V_{yy} + V_{zz} = f''(r) + \frac{2}{r} f'(r) \][/tex]
1. Define [tex]\( r \)[/tex] in terms of [tex]\( x, y, \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ r^2 = x^2 + y^2 + z^2 \implies r = \sqrt{x^2 + y^2 + z^2} \][/tex]
2. Express [tex]\( V \)[/tex] as a function of [tex]\( r \)[/tex]:
[tex]\[ V = f(r) \][/tex]
3. Find the first and second derivatives of [tex]\( r \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial r}{\partial x} = \frac{x}{r} \][/tex]
[tex]\[ \frac{\partial^2 r}{\partial x^2} = \frac{r - x \frac{\partial r}{\partial x}}{r^2} = \frac{r - \frac{x^2}{r}}{r^2} = \frac{r^2 - x^2}{r^3} = \frac{y^2 + z^2}{r^3} \][/tex]
4. Use the chain rule to find the first and second derivatives of [tex]\( V \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ V_x = \frac{\partial V}{\partial x} = \frac{d f}{d r} \cdot \frac{\partial r}{\partial x} = f'(r) \cdot \frac{x}{r} \][/tex]
[tex]\[ V_{xx} = \frac{\partial}{\partial x} \left( f'(r) \cdot \frac{x}{r} \right) = f''(r) \cdot \left( \frac{x}{r} \right)^2 + f'(r) \cdot \frac{r^2 - x^2}{r^3} = f''(r) \frac{x^2}{r^2} + f'(r) \cdot \frac{y^2 + z^2}{r^3} \][/tex]
5. Find similar expressions for the second derivatives with respect to [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ V_{yy} = f''(r) \frac{y^2}{r^2} + f'(r) \cdot \frac{x^2 + z^2}{r^3} \][/tex]
[tex]\[ V_{zz} = f''(r) \frac{z^2}{r^2} + f'(r) \cdot \frac{x^2 + y^2}{r^3} \][/tex]
6. Sum the second partial derivatives to compute the Laplacian [tex]\( V_{xx} + V_{yy} + V_{zz} \)[/tex]:
[tex]\[ V_{xx} + V_{yy} + V_{zz} = f''(r) \left( \frac{x^2 + y^2 + z^2}{r^2} \right) + f'(r) \cdot \left( \frac{y^2 + z^2 + x^2 + z^2 + x^2 + y^2}{r^3} \right) \][/tex]
Simplify the terms:
[tex]\[ \frac{x^2 + y^2 + z^2}{r^2} = 1 \][/tex]
[tex]\[ \frac{2(x^2 + y^2 + z^2)}{r^3} = \frac{2r^2}{r^3} = \frac{2}{r} \][/tex]
7. Combine these results to get the final expression:
[tex]\[ V_{xx} + V_{yy} + V_{zz} = f''(r) \cdot 1 + f'(r) \cdot \frac{2}{r} = f''(r) + \frac{2}{r} f'(r) \][/tex]
Hence, we have proven that:
[tex]\[ V_{xx} + V_{yy} + V_{zz} = f''(r) + \frac{2}{r} f'(r) \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.