IDNLearn.com: Where your questions meet expert advice and community support. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To determine the intervals where the function [tex]\( f(x) = \frac{4}{x^2 - 2x - 3} \)[/tex] is decreasing, we should analyze the behavior of its derivative [tex]\( f'(x) \)[/tex].
1. First, we identify the function and its components:
[tex]\[ f(x) = \frac{4}{x^2 - 2x - 3} \][/tex]
2. Next, we recognize that the derivative of [tex]\( f(x) \)[/tex] can be found using the quotient rule:
[tex]\[ f'(x) = \frac{d}{dx} \left( \frac{4}{x^2 - 2x - 3} \right) \][/tex]
3. Let [tex]\( g(x) = 4 \)[/tex] and [tex]\( h(x) = x^2 - 2x - 3 \)[/tex]. The quotient rule is given by:
[tex]\[ f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2} \][/tex]
Here, [tex]\( g'(x) = 0 \)[/tex] because [tex]\( g(x) \)[/tex] is a constant.
4. So, we have:
[tex]\[ f'(x) = \frac{0 \cdot (x^2 - 2x - 3) - 4 \cdot (2x - 2)}{(x^2 - 2x - 3)^2} = \frac{-4(2x - 2)}{(x^2 - 2x - 3)^2} \][/tex]
[tex]\[ f'(x) = \frac{-8x + 8}{(x^2 - 2x - 3)^2} \][/tex]
[tex]\[ f'(x) = \frac{8(1 - x)}{(x^2 - 2x - 3)^2} \][/tex]
5. To determine where [tex]\( f(x) \)[/tex] is decreasing, we need to find where [tex]\( f'(x) < 0 \)[/tex]. The critical points occur where the numerator is zero:
[tex]\[ 8(1 - x) = 0 \implies 1 - x = 0 \implies x = 1 \][/tex]
6. We also need to consider where the denominator [tex]\( (x^2 - 2x - 3)^2 \)[/tex] is zero, as these points are not in the domain of [tex]\( f(x) \)[/tex]. The denominator can be factored:
[tex]\[ x^2 - 2x - 3 = (x - 3)(x + 1) \][/tex]
So, the zeroes of the denominator are at:
[tex]\[ x = -1 \quad \text{and} \quad x = 3 \][/tex]
7. We now have critical points and points of discontinuity at [tex]\( x = -1 \)[/tex], [tex]\( x = 1 \)[/tex], and [tex]\( x = 3 \)[/tex].
8. To figure out on which intervals [tex]\( f'(x) \)[/tex] is negative, we test the sign of [tex]\( f'(x) \)[/tex] in the intervals [tex]\((-\infty, -1)\)[/tex], [tex]\((-1, 1)\)[/tex], [tex]\((1, 3)\)[/tex], and [tex]\((3, \infty)\)[/tex]:
- For [tex]\( x \)[/tex] in [tex]\((-\infty, -1)\)[/tex], pick, for example, [tex]\( x = -2 \)[/tex]:
[tex]\[ f'(-2) = \frac{8(1 - (-2))}{((-2)^2 - 2(-2) - 3)^2} = \frac{8(1 + 2)}{(4 + 4 - 3)^2} = \frac{24}{5^2} = \frac{24}{25} > 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is increasing on [tex]\((-\infty, -1)\)[/tex].
- For [tex]\( x \)[/tex] in [tex]\((-1, 1)\)[/tex], pick, for example, [tex]\( x = 0 \)[/tex]:
[tex]\[ f'(0) = \frac{8(1 - 0)}{(0 - 2(0) - 3)^2} = \frac{8 \cdot 1}{(-3)^2} = \frac{8}{9} < 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is decreasing on [tex]\((-1, 1)\)[/tex].
- For [tex]\( x \)[/tex] in [tex]\((1, 3)\)[/tex], pick, for example, [tex]\( x = 2 \)[/tex]:
[tex]\[ f'(2) = \frac{8(1 - 2)}{(4 - 4 - 3)^2} = \frac{8(-1)}{(-3)^2} = \frac{-8}{9} < 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is decreasing on [tex]\((1, 3)\)[/tex].
- For [tex]\( x \)[/tex] in [tex]\((3, \infty)\)[/tex], pick, for example, [tex]\( x = 4 \)[/tex]:
[tex]\[ f'(4) = \frac{8(1 - 4)}{(16 - 8 - 3)^2} = \frac{8(-3)}{5^2} = \frac{-24}{25} > 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is increasing on [tex]\((3, \infty)\)[/tex].
So, the intervals where [tex]\( f(x) \)[/tex] is decreasing are:
[tex]\[ (-1, 1) \cup (1, 3) = (-1, 3) \][/tex]
Therefore, the correct option is:
[tex]\[ (-1, 3) \][/tex]
1. First, we identify the function and its components:
[tex]\[ f(x) = \frac{4}{x^2 - 2x - 3} \][/tex]
2. Next, we recognize that the derivative of [tex]\( f(x) \)[/tex] can be found using the quotient rule:
[tex]\[ f'(x) = \frac{d}{dx} \left( \frac{4}{x^2 - 2x - 3} \right) \][/tex]
3. Let [tex]\( g(x) = 4 \)[/tex] and [tex]\( h(x) = x^2 - 2x - 3 \)[/tex]. The quotient rule is given by:
[tex]\[ f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2} \][/tex]
Here, [tex]\( g'(x) = 0 \)[/tex] because [tex]\( g(x) \)[/tex] is a constant.
4. So, we have:
[tex]\[ f'(x) = \frac{0 \cdot (x^2 - 2x - 3) - 4 \cdot (2x - 2)}{(x^2 - 2x - 3)^2} = \frac{-4(2x - 2)}{(x^2 - 2x - 3)^2} \][/tex]
[tex]\[ f'(x) = \frac{-8x + 8}{(x^2 - 2x - 3)^2} \][/tex]
[tex]\[ f'(x) = \frac{8(1 - x)}{(x^2 - 2x - 3)^2} \][/tex]
5. To determine where [tex]\( f(x) \)[/tex] is decreasing, we need to find where [tex]\( f'(x) < 0 \)[/tex]. The critical points occur where the numerator is zero:
[tex]\[ 8(1 - x) = 0 \implies 1 - x = 0 \implies x = 1 \][/tex]
6. We also need to consider where the denominator [tex]\( (x^2 - 2x - 3)^2 \)[/tex] is zero, as these points are not in the domain of [tex]\( f(x) \)[/tex]. The denominator can be factored:
[tex]\[ x^2 - 2x - 3 = (x - 3)(x + 1) \][/tex]
So, the zeroes of the denominator are at:
[tex]\[ x = -1 \quad \text{and} \quad x = 3 \][/tex]
7. We now have critical points and points of discontinuity at [tex]\( x = -1 \)[/tex], [tex]\( x = 1 \)[/tex], and [tex]\( x = 3 \)[/tex].
8. To figure out on which intervals [tex]\( f'(x) \)[/tex] is negative, we test the sign of [tex]\( f'(x) \)[/tex] in the intervals [tex]\((-\infty, -1)\)[/tex], [tex]\((-1, 1)\)[/tex], [tex]\((1, 3)\)[/tex], and [tex]\((3, \infty)\)[/tex]:
- For [tex]\( x \)[/tex] in [tex]\((-\infty, -1)\)[/tex], pick, for example, [tex]\( x = -2 \)[/tex]:
[tex]\[ f'(-2) = \frac{8(1 - (-2))}{((-2)^2 - 2(-2) - 3)^2} = \frac{8(1 + 2)}{(4 + 4 - 3)^2} = \frac{24}{5^2} = \frac{24}{25} > 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is increasing on [tex]\((-\infty, -1)\)[/tex].
- For [tex]\( x \)[/tex] in [tex]\((-1, 1)\)[/tex], pick, for example, [tex]\( x = 0 \)[/tex]:
[tex]\[ f'(0) = \frac{8(1 - 0)}{(0 - 2(0) - 3)^2} = \frac{8 \cdot 1}{(-3)^2} = \frac{8}{9} < 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is decreasing on [tex]\((-1, 1)\)[/tex].
- For [tex]\( x \)[/tex] in [tex]\((1, 3)\)[/tex], pick, for example, [tex]\( x = 2 \)[/tex]:
[tex]\[ f'(2) = \frac{8(1 - 2)}{(4 - 4 - 3)^2} = \frac{8(-1)}{(-3)^2} = \frac{-8}{9} < 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is decreasing on [tex]\((1, 3)\)[/tex].
- For [tex]\( x \)[/tex] in [tex]\((3, \infty)\)[/tex], pick, for example, [tex]\( x = 4 \)[/tex]:
[tex]\[ f'(4) = \frac{8(1 - 4)}{(16 - 8 - 3)^2} = \frac{8(-3)}{5^2} = \frac{-24}{25} > 0 \][/tex]
Hence, [tex]\( f(x) \)[/tex] is increasing on [tex]\((3, \infty)\)[/tex].
So, the intervals where [tex]\( f(x) \)[/tex] is decreasing are:
[tex]\[ (-1, 1) \cup (1, 3) = (-1, 3) \][/tex]
Therefore, the correct option is:
[tex]\[ (-1, 3) \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.