IDNLearn.com provides a collaborative platform for sharing and gaining knowledge. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To determine the rate law for the given reaction, we need to identify the reaction orders with respect to each reactant, [tex]\( \text{[HgCl}_2\text{]} \)[/tex] and [tex]\( \text{[C}_2\text{O}_4^{2-}\text{]} \)[/tex]. We'll use the method of initial rates with the provided experimental data:
| Experiment | [tex]\( \text{HgCl}_2 \, (\text{M}) \)[/tex] | [tex]\( \text{C}_2\text{O}_4^{2-} \, (\text{M}) \)[/tex] | Rate (M/s) |
|------------|-----------------|------------------|--------------------------|
| 1 | 0.764 | 0.15 | [tex]\( 3.2 \times 10^{-4} \)[/tex] |
| 2 | 0.164 | 0.45 | [tex]\( 2.9 \times 10^{-4} \)[/tex] |
| 3 | 0.062 | 0.45 | [tex]\( 1.4 \times 10^{-4} \)[/tex] |
| 4 | 0.246 | 0.15 | [tex]\( 4.8 \times 10^{-1} \)[/tex] |
Assume the rate law is of the form:
[tex]\[ \text{Rate} = k \left[\text{HgCl}_2\right]^m \left[\text{C}_2\text{O}_4^{2-}\right]^n \][/tex]
### Step 1: Determine the order with respect to [tex]\( \text{HgCl}_2 \)[/tex] (m)
Compare experiments 1 and 3, where [tex]\( \text{[C}_2\text{O}_4^{2-}\text{]} \)[/tex] is constant and [tex]\( \text{[HgCl}_2\text{]} \)[/tex] changes.
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_3} = \frac{k \left[ \text{HgCl}_2 \right]_1^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_1^n}{k \left[ \text{HgCl}_2 \right]_3^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_3^n} \][/tex]
Since [tex]\( \left[ \text{C}_2 \text{O}_4^{2-} \right] \)[/tex] is constant, it cancels out:
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_3} = \left( \frac{ \left[ \text{HgCl}_2 \right]_1}{\left[ \text{HgCl}_2 \right]_3} \right)^m \][/tex]
Substitute the values from experiments 1 and 3:
[tex]\[ \frac{3.2 \times 10^{-4}}{1.4 \times 10^{-4}} = \left( \frac{0.764}{0.062} \right)^m \][/tex]
[tex]\[ 2.2857 = 12.3226^m \][/tex]
Taking the logarithm of both sides:
[tex]\[ \log(2.2857) = m \log(12.3226) \][/tex]
[tex]\[ m \approx \frac{\log(2.2857)}{\log(12.3226)} \approx 0.3173 \approx 0.3 \][/tex]
### Step 2: Determine the order with respect to [tex]\( \text{C}_2\text{O}_4^{2-} \)[/tex] (n)
Compare experiments 2 and 3, where [tex]\( \text{[HgCl}_2\text{]} \)[/tex] is constant and [tex]\( \text{[C}_2\text{O}_4^{2-}\text{]} \)[/tex] changes.
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_3} = \frac{k \left[ \text{HgCl}_2 \right]_2^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_2^n}{k \left[ \text{HgCl}_2 \right]_3^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_3^n} \][/tex]
Since [tex]\( \left[ \text{HgCl}_2 \right] \)[/tex] is constant, it cancels out:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_3} = \left( \frac{\left[ \text{C}_2 \text{O}_4^{2-} \right]_2}{\left[ \text{C}_2 \text{O}_4^{2-} \right]_3} \right)^n \][/tex]
Substitute the values from experiments 2 and 3:
[tex]\[ \frac{2.9 \times 10^{-4}}{1.4 \times 10^{-4}} = \left(\frac{0.45}{0.45}\right)^n \][/tex]
The ratio of concentrations is 1, indicating [tex]\(n=0\)[/tex] if simplified but we must validate further considering experimental variations, hence we test between 1 and 2:
The magnitudes may verify [tex]\(n=1\)[/tex].
### Step 3: Determine the rate constant [tex]\(k\)[/tex]
Using experiment 1 with found orders [tex]\( m=0.3, n= 0.4\)[/tex]
[tex]\[ \text{Rate}_1 = k \left[\text{HgCl}_2 \right]_1^{0.3} \left[\text{C}_2\text{O}_4^{2-}\right]_1^{1} \][/tex]
[tex]\[ 3.2 \times 10^{-4} = k \left(0.764\right)^{0.3} \left(0.15\right) \][/tex]
Calculate [tex]\( k \)[/tex]:
\[
k= 3.2 \times 10^{-4} / 0.1189 = 2.691 \times 10^{-3}
Proper Units \(M /s means =2.7 \approx
Answer:
Exact Law even Close values suggests
Rate = k [HCNI2] 0.3 [C _2]
| Experiment | [tex]\( \text{HgCl}_2 \, (\text{M}) \)[/tex] | [tex]\( \text{C}_2\text{O}_4^{2-} \, (\text{M}) \)[/tex] | Rate (M/s) |
|------------|-----------------|------------------|--------------------------|
| 1 | 0.764 | 0.15 | [tex]\( 3.2 \times 10^{-4} \)[/tex] |
| 2 | 0.164 | 0.45 | [tex]\( 2.9 \times 10^{-4} \)[/tex] |
| 3 | 0.062 | 0.45 | [tex]\( 1.4 \times 10^{-4} \)[/tex] |
| 4 | 0.246 | 0.15 | [tex]\( 4.8 \times 10^{-1} \)[/tex] |
Assume the rate law is of the form:
[tex]\[ \text{Rate} = k \left[\text{HgCl}_2\right]^m \left[\text{C}_2\text{O}_4^{2-}\right]^n \][/tex]
### Step 1: Determine the order with respect to [tex]\( \text{HgCl}_2 \)[/tex] (m)
Compare experiments 1 and 3, where [tex]\( \text{[C}_2\text{O}_4^{2-}\text{]} \)[/tex] is constant and [tex]\( \text{[HgCl}_2\text{]} \)[/tex] changes.
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_3} = \frac{k \left[ \text{HgCl}_2 \right]_1^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_1^n}{k \left[ \text{HgCl}_2 \right]_3^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_3^n} \][/tex]
Since [tex]\( \left[ \text{C}_2 \text{O}_4^{2-} \right] \)[/tex] is constant, it cancels out:
[tex]\[ \frac{\text{Rate}_1}{\text{Rate}_3} = \left( \frac{ \left[ \text{HgCl}_2 \right]_1}{\left[ \text{HgCl}_2 \right]_3} \right)^m \][/tex]
Substitute the values from experiments 1 and 3:
[tex]\[ \frac{3.2 \times 10^{-4}}{1.4 \times 10^{-4}} = \left( \frac{0.764}{0.062} \right)^m \][/tex]
[tex]\[ 2.2857 = 12.3226^m \][/tex]
Taking the logarithm of both sides:
[tex]\[ \log(2.2857) = m \log(12.3226) \][/tex]
[tex]\[ m \approx \frac{\log(2.2857)}{\log(12.3226)} \approx 0.3173 \approx 0.3 \][/tex]
### Step 2: Determine the order with respect to [tex]\( \text{C}_2\text{O}_4^{2-} \)[/tex] (n)
Compare experiments 2 and 3, where [tex]\( \text{[HgCl}_2\text{]} \)[/tex] is constant and [tex]\( \text{[C}_2\text{O}_4^{2-}\text{]} \)[/tex] changes.
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_3} = \frac{k \left[ \text{HgCl}_2 \right]_2^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_2^n}{k \left[ \text{HgCl}_2 \right]_3^m \left[ \text{C}_2 \text{O}_4^{2-} \right]_3^n} \][/tex]
Since [tex]\( \left[ \text{HgCl}_2 \right] \)[/tex] is constant, it cancels out:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_3} = \left( \frac{\left[ \text{C}_2 \text{O}_4^{2-} \right]_2}{\left[ \text{C}_2 \text{O}_4^{2-} \right]_3} \right)^n \][/tex]
Substitute the values from experiments 2 and 3:
[tex]\[ \frac{2.9 \times 10^{-4}}{1.4 \times 10^{-4}} = \left(\frac{0.45}{0.45}\right)^n \][/tex]
The ratio of concentrations is 1, indicating [tex]\(n=0\)[/tex] if simplified but we must validate further considering experimental variations, hence we test between 1 and 2:
The magnitudes may verify [tex]\(n=1\)[/tex].
### Step 3: Determine the rate constant [tex]\(k\)[/tex]
Using experiment 1 with found orders [tex]\( m=0.3, n= 0.4\)[/tex]
[tex]\[ \text{Rate}_1 = k \left[\text{HgCl}_2 \right]_1^{0.3} \left[\text{C}_2\text{O}_4^{2-}\right]_1^{1} \][/tex]
[tex]\[ 3.2 \times 10^{-4} = k \left(0.764\right)^{0.3} \left(0.15\right) \][/tex]
Calculate [tex]\( k \)[/tex]:
\[
k= 3.2 \times 10^{-4} / 0.1189 = 2.691 \times 10^{-3}
Proper Units \(M /s means =2.7 \approx
Answer:
Exact Law even Close values suggests
Rate = k [HCNI2] 0.3 [C _2]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.