IDNLearn.com offers a unique blend of expert answers and community insights. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
We'll work through the following steps to determine the rate law and the rate constant, given provided reaction data.
### Part A: Determining the Rate Law
The general rate law for the reaction can be expressed as:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{m} [\text{C}_2\text{O}_4^{2-}]^{n} \][/tex]
To determine the orders of reaction, [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare rates from different experiments where concentrations of one reactant change while the other remains constant.
We use logarithms to transform the rate equation into a linear form to make it easier to solve for [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ \ln(\text{rate}) = \ln(k) + m\ln([\text{Hg}_2\text{Cl}_2]) + n\ln([\text{C}_2\text{O}_4^{2-}]) \][/tex]
By performing linear regression analysis on the transformed data, we extract [tex]\( m \)[/tex] and [tex]\( n \)[/tex]. According to the calculations, the results are:
[tex]\[ m = -1.05 \][/tex]
[tex]\[ n = -0.30 \][/tex]
Therefore, the rate law is:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
### Part B: Determining the Rate Constant [tex]\( k \)[/tex] and Its Units
Given [tex]\( m = -1.05 \)[/tex] and [tex]\( n = -0.30 \)[/tex], we use experimental data to find the rate constant [tex]\( k \)[/tex].
Using the provided experimental data for one of the experiments (e.g., Experiment 1):
[tex]\[ [\text{Hg}_2\text{Cl}_2] = 0.164\, \text{M} \][/tex]
[tex]\[ [\text{C}_2\text{O}_4^{2-}] = 8.15\, \text{M} \][/tex]
[tex]\[ \text{rate} = 3.2 \times 10^{-5} \, \text{M/s} \][/tex]
We substitute these values into our rate equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 3.2 \times 10^{-5} = k (0.164)^{-1.05} (8.15)^{-0.30} \][/tex]
From the calculations performed (see given results), we get:
[tex]\[ k = 8.86 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \approx 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \][/tex]
The units of [tex]\( k \)[/tex] are determined to maintain the rate constant consistent with the rate law:
Since [tex]\( m + n = -1.05 + (-0.30) = -1.35 \)[/tex], the rate constant [tex]\( k \)[/tex] unit becomes:
[tex]\[ k \text{ unit} = \frac{\text{M/s}}{ \text{M}^{-1.35} } = \text{M}^{1.35} \text{s}^{-1} \][/tex]
Summary:
- Part A: Rate Law:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
- Part B: Rate Constant [tex]\( k \)[/tex]:
[tex]\[ k = 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1}, \][/tex]
These calculations provide a comprehensive determination of the reaction kinetics based on the experimental data.
### Part A: Determining the Rate Law
The general rate law for the reaction can be expressed as:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{m} [\text{C}_2\text{O}_4^{2-}]^{n} \][/tex]
To determine the orders of reaction, [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare rates from different experiments where concentrations of one reactant change while the other remains constant.
We use logarithms to transform the rate equation into a linear form to make it easier to solve for [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ \ln(\text{rate}) = \ln(k) + m\ln([\text{Hg}_2\text{Cl}_2]) + n\ln([\text{C}_2\text{O}_4^{2-}]) \][/tex]
By performing linear regression analysis on the transformed data, we extract [tex]\( m \)[/tex] and [tex]\( n \)[/tex]. According to the calculations, the results are:
[tex]\[ m = -1.05 \][/tex]
[tex]\[ n = -0.30 \][/tex]
Therefore, the rate law is:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
### Part B: Determining the Rate Constant [tex]\( k \)[/tex] and Its Units
Given [tex]\( m = -1.05 \)[/tex] and [tex]\( n = -0.30 \)[/tex], we use experimental data to find the rate constant [tex]\( k \)[/tex].
Using the provided experimental data for one of the experiments (e.g., Experiment 1):
[tex]\[ [\text{Hg}_2\text{Cl}_2] = 0.164\, \text{M} \][/tex]
[tex]\[ [\text{C}_2\text{O}_4^{2-}] = 8.15\, \text{M} \][/tex]
[tex]\[ \text{rate} = 3.2 \times 10^{-5} \, \text{M/s} \][/tex]
We substitute these values into our rate equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 3.2 \times 10^{-5} = k (0.164)^{-1.05} (8.15)^{-0.30} \][/tex]
From the calculations performed (see given results), we get:
[tex]\[ k = 8.86 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \approx 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \][/tex]
The units of [tex]\( k \)[/tex] are determined to maintain the rate constant consistent with the rate law:
Since [tex]\( m + n = -1.05 + (-0.30) = -1.35 \)[/tex], the rate constant [tex]\( k \)[/tex] unit becomes:
[tex]\[ k \text{ unit} = \frac{\text{M/s}}{ \text{M}^{-1.35} } = \text{M}^{1.35} \text{s}^{-1} \][/tex]
Summary:
- Part A: Rate Law:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
- Part B: Rate Constant [tex]\( k \)[/tex]:
[tex]\[ k = 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1}, \][/tex]
These calculations provide a comprehensive determination of the reaction kinetics based on the experimental data.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.