IDNLearn.com: Your trusted platform for finding precise and reliable answers. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
We'll work through the following steps to determine the rate law and the rate constant, given provided reaction data.
### Part A: Determining the Rate Law
The general rate law for the reaction can be expressed as:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{m} [\text{C}_2\text{O}_4^{2-}]^{n} \][/tex]
To determine the orders of reaction, [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare rates from different experiments where concentrations of one reactant change while the other remains constant.
We use logarithms to transform the rate equation into a linear form to make it easier to solve for [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ \ln(\text{rate}) = \ln(k) + m\ln([\text{Hg}_2\text{Cl}_2]) + n\ln([\text{C}_2\text{O}_4^{2-}]) \][/tex]
By performing linear regression analysis on the transformed data, we extract [tex]\( m \)[/tex] and [tex]\( n \)[/tex]. According to the calculations, the results are:
[tex]\[ m = -1.05 \][/tex]
[tex]\[ n = -0.30 \][/tex]
Therefore, the rate law is:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
### Part B: Determining the Rate Constant [tex]\( k \)[/tex] and Its Units
Given [tex]\( m = -1.05 \)[/tex] and [tex]\( n = -0.30 \)[/tex], we use experimental data to find the rate constant [tex]\( k \)[/tex].
Using the provided experimental data for one of the experiments (e.g., Experiment 1):
[tex]\[ [\text{Hg}_2\text{Cl}_2] = 0.164\, \text{M} \][/tex]
[tex]\[ [\text{C}_2\text{O}_4^{2-}] = 8.15\, \text{M} \][/tex]
[tex]\[ \text{rate} = 3.2 \times 10^{-5} \, \text{M/s} \][/tex]
We substitute these values into our rate equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 3.2 \times 10^{-5} = k (0.164)^{-1.05} (8.15)^{-0.30} \][/tex]
From the calculations performed (see given results), we get:
[tex]\[ k = 8.86 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \approx 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \][/tex]
The units of [tex]\( k \)[/tex] are determined to maintain the rate constant consistent with the rate law:
Since [tex]\( m + n = -1.05 + (-0.30) = -1.35 \)[/tex], the rate constant [tex]\( k \)[/tex] unit becomes:
[tex]\[ k \text{ unit} = \frac{\text{M/s}}{ \text{M}^{-1.35} } = \text{M}^{1.35} \text{s}^{-1} \][/tex]
Summary:
- Part A: Rate Law:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
- Part B: Rate Constant [tex]\( k \)[/tex]:
[tex]\[ k = 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1}, \][/tex]
These calculations provide a comprehensive determination of the reaction kinetics based on the experimental data.
### Part A: Determining the Rate Law
The general rate law for the reaction can be expressed as:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{m} [\text{C}_2\text{O}_4^{2-}]^{n} \][/tex]
To determine the orders of reaction, [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare rates from different experiments where concentrations of one reactant change while the other remains constant.
We use logarithms to transform the rate equation into a linear form to make it easier to solve for [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ \ln(\text{rate}) = \ln(k) + m\ln([\text{Hg}_2\text{Cl}_2]) + n\ln([\text{C}_2\text{O}_4^{2-}]) \][/tex]
By performing linear regression analysis on the transformed data, we extract [tex]\( m \)[/tex] and [tex]\( n \)[/tex]. According to the calculations, the results are:
[tex]\[ m = -1.05 \][/tex]
[tex]\[ n = -0.30 \][/tex]
Therefore, the rate law is:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
### Part B: Determining the Rate Constant [tex]\( k \)[/tex] and Its Units
Given [tex]\( m = -1.05 \)[/tex] and [tex]\( n = -0.30 \)[/tex], we use experimental data to find the rate constant [tex]\( k \)[/tex].
Using the provided experimental data for one of the experiments (e.g., Experiment 1):
[tex]\[ [\text{Hg}_2\text{Cl}_2] = 0.164\, \text{M} \][/tex]
[tex]\[ [\text{C}_2\text{O}_4^{2-}] = 8.15\, \text{M} \][/tex]
[tex]\[ \text{rate} = 3.2 \times 10^{-5} \, \text{M/s} \][/tex]
We substitute these values into our rate equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 3.2 \times 10^{-5} = k (0.164)^{-1.05} (8.15)^{-0.30} \][/tex]
From the calculations performed (see given results), we get:
[tex]\[ k = 8.86 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \approx 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \][/tex]
The units of [tex]\( k \)[/tex] are determined to maintain the rate constant consistent with the rate law:
Since [tex]\( m + n = -1.05 + (-0.30) = -1.35 \)[/tex], the rate constant [tex]\( k \)[/tex] unit becomes:
[tex]\[ k \text{ unit} = \frac{\text{M/s}}{ \text{M}^{-1.35} } = \text{M}^{1.35} \text{s}^{-1} \][/tex]
Summary:
- Part A: Rate Law:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]
- Part B: Rate Constant [tex]\( k \)[/tex]:
[tex]\[ k = 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1}, \][/tex]
These calculations provide a comprehensive determination of the reaction kinetics based on the experimental data.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.