IDNLearn.com: Your trusted platform for finding precise and reliable answers. Find accurate and detailed answers to your questions from our experienced and dedicated community members.

Consider the following reaction between mercury(II) chloride and oxalate ion:
[tex]\[2 HgCl_2(aq) + C_2O_4^{2-}(aq) \rightarrow 2 Cl^-(aq) + 2 CO_2(g) + Hg_2Cl_2(s)\][/tex]

The initial rate of this reaction was determined for several concentrations of [tex]\(HgCl_2\)[/tex] and [tex]\(C_2O_4^{2-}\)[/tex], and the following rate data were obtained for the rate of disappearance of [tex]\(C_2O_4^{2-}\)[/tex]:

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
Experiment & \([HgCl_2] (M)\) & \([C_2O_4^{2-}] (M)\) & Rate \((M/s)\) \\
\hline
1 & 0.164 & 0.815 & \(3.2 \times 10^{-5}\) \\
\hline
2 & 0.164 & 0.45 & \(2.9 \times 10^{-4}\) \\
\hline
3 & 0.082 & 0.45 & \(1.4 \times 10^{-4}\) \\
\hline
4 & 0.245 & 0.15 & \(4.8 \times 10^{-5}\) \\
\hline
\end{tabular}
\][/tex]

Part A

What is the rate law for this reaction?

A. [tex]\(\text{rate} = k\left[ HgCl_2\right]^2\left[ C_2O_4^{2-}\right]\)[/tex]

B. [tex]\(\text{rate} = k\left[ HgCl_2\right]^2 \left[ C_2O_4^{2-}\right]\)[/tex]

C. [tex]\(\text{rate} = k\left[ HgCl_2\right]\left[ C_2O_4^{2-}\right]^2\)[/tex]

D. [tex]\(\text{rate} = k\left[ HgCl_2\right]\left[ C_2O_4^{2-}\right]\)[/tex]

Part B

What is the value of the rate constant with proper units?
Express your answer using two significant figures.

[tex]\[k = \square \, M^{-2} s^{-1}\][/tex]


Sagot :

We'll work through the following steps to determine the rate law and the rate constant, given provided reaction data.

### Part A: Determining the Rate Law

The general rate law for the reaction can be expressed as:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{m} [\text{C}_2\text{O}_4^{2-}]^{n} \][/tex]

To determine the orders of reaction, [tex]\( m \)[/tex] and [tex]\( n \)[/tex], we compare rates from different experiments where concentrations of one reactant change while the other remains constant.

We use logarithms to transform the rate equation into a linear form to make it easier to solve for [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ \ln(\text{rate}) = \ln(k) + m\ln([\text{Hg}_2\text{Cl}_2]) + n\ln([\text{C}_2\text{O}_4^{2-}]) \][/tex]

By performing linear regression analysis on the transformed data, we extract [tex]\( m \)[/tex] and [tex]\( n \)[/tex]. According to the calculations, the results are:
[tex]\[ m = -1.05 \][/tex]
[tex]\[ n = -0.30 \][/tex]

Therefore, the rate law is:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]

### Part B: Determining the Rate Constant [tex]\( k \)[/tex] and Its Units

Given [tex]\( m = -1.05 \)[/tex] and [tex]\( n = -0.30 \)[/tex], we use experimental data to find the rate constant [tex]\( k \)[/tex].

Using the provided experimental data for one of the experiments (e.g., Experiment 1):
[tex]\[ [\text{Hg}_2\text{Cl}_2] = 0.164\, \text{M} \][/tex]
[tex]\[ [\text{C}_2\text{O}_4^{2-}] = 8.15\, \text{M} \][/tex]
[tex]\[ \text{rate} = 3.2 \times 10^{-5} \, \text{M/s} \][/tex]

We substitute these values into our rate equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 3.2 \times 10^{-5} = k (0.164)^{-1.05} (8.15)^{-0.30} \][/tex]

From the calculations performed (see given results), we get:
[tex]\[ k = 8.86 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \approx 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1} \][/tex]

The units of [tex]\( k \)[/tex] are determined to maintain the rate constant consistent with the rate law:
Since [tex]\( m + n = -1.05 + (-0.30) = -1.35 \)[/tex], the rate constant [tex]\( k \)[/tex] unit becomes:
[tex]\[ k \text{ unit} = \frac{\text{M/s}}{ \text{M}^{-1.35} } = \text{M}^{1.35} \text{s}^{-1} \][/tex]

Summary:
- Part A: Rate Law:
[tex]\[ \text{rate} = k [\text{Hg}_2\text{Cl}_2]^{-1.05} [\text{C}_2\text{O}_4^{2-}]^{-0.30} \][/tex]

- Part B: Rate Constant [tex]\( k \)[/tex]:
[tex]\[ k = 8.9 \times 10^{-6} \, \text{M}^{1.35} \text{s}^{-1}, \][/tex]

These calculations provide a comprehensive determination of the reaction kinetics based on the experimental data.