Get the information you need with the help of IDNLearn.com's expert community. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.

MyLab and Mastering
Course Home
mastering.pearson.com/7courseld=12881541#/

Finish up:

Chapter TA Homework - Attempt 1

Item 12

Part A

The initial rate of this reaction was determined for several concentrations of [tex]$HgCl_2$[/tex] and [tex]$C_2O_4^{2-}$[/tex], and the following rate data were obtained for the rate of disappearance of [tex]$C_2O_4^{2-}$[/tex]:

[tex]\[
2 \ HgCl_2(aq) + C_2O_4^{2-}(aq) \rightarrow 2 \ Cl^-(aq) + 2 \ CO_2(g) + Hg_2Cl_2(s)
\][/tex]

\begin{tabular}{|l|l|l|l|}
\hline
Experiment & [tex]$HgCl_2(M)$[/tex] & [tex]$C_2O_4^{2-}(M)$[/tex] & Rate [tex]$(M/s)$[/tex] \\
\hline
1 & 0.164 & 0.15 & [tex]$3.2 \times 10^{-4}$[/tex] \\
\hline
2 & 0.164 & 0.45 & [tex]$2.9 \times 10^{-4}$[/tex] \\
\hline
3 & 0.502 & 0.45 & [tex]$1.4 \times 10^{-4}$[/tex] \\
\hline
4 & 0.246 & 0.15 & [tex]$4.8 \times 10^{-4}$[/tex] \\
\hline
\end{tabular}

Part B

Part C

What is the reaction rate when the concentration of [tex]$HgCl_2$[/tex] is 0.150 M and that of [tex]$C_2O_4^{2-}$[/tex] is 0.25 M, if the temperature is the same as that used to obtain the data shown? Express your answer using two significant figures.

[tex]$\square$[/tex] Submit Request Answer Provide Feedback


Sagot :

Let's tackle this problem step-by-step.

### Step 1: Determine the reaction orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex]
Assume the rate law for the reaction is:
[tex]\[ \text{Rate} = k [\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n \][/tex]

We will use the given experimental data to determine the orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex].

#### Finding the order with respect to [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex]:

- Experiment 1: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.15 \, M\)[/tex], Rate = [tex]\(3.2 \times 10^{-1} \, M/s\)[/tex]
- Experiment 2: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(2.9 \times 10^{-4} \, M/s\)[/tex]

Since the concentration of [tex]\(\text{HgCl}_2\)[/tex] is the same in both experiments, the change in rate is only due to the change in concentration of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex]. We can write:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_1} = \left(\frac{[\text{C}_2\text{O}_4^{2-}]_2}{[\text{C}_2\text{O}_4^{2-}]_1}\right)^n \][/tex]

Plugging in the given values:
[tex]\[ \frac{2.9 \times 10^{-4}}{3.2 \times 10^{-1}} = \left(\frac{0.45}{0.15}\right)^n \][/tex]

Solving for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\log{\left( \frac{2.9 \times 10^{-4}}{3.2 \times 10^{-1}} \right)}}{\log{\left( \frac{0.45}{0.15} \right)}} \][/tex]
[tex]\[ n = -6.38 \][/tex]

#### Finding the order with respect to [tex]\(\text{HgCl}_2\)[/tex]:

- Experiment 2: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(2.9 \times 10^{-4} \, M/s\)[/tex]
- Experiment 3: [tex]\([\text{HgCl}_2] = 0.502 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(1.4 \times 10^{-4} \, M/s\)[/tex]

Since the concentration of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex] is the same in both experiments, the change in rate is only due to the change in concentration of [tex]\(\text{HgCl}_2\)[/tex]. We can write:
[tex]\[ \frac{\text{Rate}_3}{\text{Rate}_2} = \left(\frac{[\text{HgCl}_2]_3}{[\text{HgCl}_2]_2}\right)^m \][/tex]

Plugging in the given values:
[tex]\[ \frac{1.4 \times 10^{-4}}{2.9 \times 10^{-4}} = \left(\frac{0.502}{0.164}\right)^m \][/tex]

Solving for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{\log{\left( \frac{1.4 \times 10^{-4}}{2.9 \times 10^{-4}} \right)}}{\log{\left( \frac{0.502}{0.164} \right)}} \][/tex]
[tex]\[ m = -0.65 \][/tex]

### Step 2: Determine the rate constant [tex]\( k \)[/tex]

Using any of the experiments:
- Experiment 1: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.15 \, M\)[/tex], Rate = [tex]\(3.2 \times 10^{-1} \, M/s\)[/tex]

We can write:
[tex]\[ k = \frac{\text{Rate}}{[\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n} \][/tex]

Plugging in the values from Experiment 1:
[tex]\[ k = \frac{3.2 \times 10^{-1}}{(0.164)^{-0.65} \cdot (0.15)^{-6.38}} \][/tex]
[tex]\[ k = 5.49 \times 10^{-7} \, M^{(m+n)} \, s^{-1} \][/tex]

### Step 3: Calculate the reaction rate for given concentrations

For [tex]\([\text{HgCl}_2] = 0.150 \, M\)[/tex] and [tex]\([\text{C}_2\text{O}_4^{2-}] = 0.25 \, M\)[/tex]:
[tex]\[ \text{Rate} = k [\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n \][/tex]

Plugging in the determined constants:
[tex]\[ \text{Rate} = 5.49 \times 10^{-7} \times (0.150)^{-0.65} \times (0.25)^{-6.38} \][/tex]
[tex]\[ \text{Rate} = 0.013 \, M/s \][/tex]

Therefore, the reaction rate when the concentration of [tex]\(\text{HgCl}_2\)[/tex] is 0.150 M and that of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex] is 0.25 M is [tex]\(0.013 \, M/s\)[/tex].