Get the information you need with the help of IDNLearn.com's expert community. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
Let's tackle this problem step-by-step.
### Step 1: Determine the reaction orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex]
Assume the rate law for the reaction is:
[tex]\[ \text{Rate} = k [\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n \][/tex]
We will use the given experimental data to determine the orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex].
#### Finding the order with respect to [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex]:
- Experiment 1: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.15 \, M\)[/tex], Rate = [tex]\(3.2 \times 10^{-1} \, M/s\)[/tex]
- Experiment 2: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(2.9 \times 10^{-4} \, M/s\)[/tex]
Since the concentration of [tex]\(\text{HgCl}_2\)[/tex] is the same in both experiments, the change in rate is only due to the change in concentration of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex]. We can write:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_1} = \left(\frac{[\text{C}_2\text{O}_4^{2-}]_2}{[\text{C}_2\text{O}_4^{2-}]_1}\right)^n \][/tex]
Plugging in the given values:
[tex]\[ \frac{2.9 \times 10^{-4}}{3.2 \times 10^{-1}} = \left(\frac{0.45}{0.15}\right)^n \][/tex]
Solving for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\log{\left( \frac{2.9 \times 10^{-4}}{3.2 \times 10^{-1}} \right)}}{\log{\left( \frac{0.45}{0.15} \right)}} \][/tex]
[tex]\[ n = -6.38 \][/tex]
#### Finding the order with respect to [tex]\(\text{HgCl}_2\)[/tex]:
- Experiment 2: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(2.9 \times 10^{-4} \, M/s\)[/tex]
- Experiment 3: [tex]\([\text{HgCl}_2] = 0.502 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(1.4 \times 10^{-4} \, M/s\)[/tex]
Since the concentration of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex] is the same in both experiments, the change in rate is only due to the change in concentration of [tex]\(\text{HgCl}_2\)[/tex]. We can write:
[tex]\[ \frac{\text{Rate}_3}{\text{Rate}_2} = \left(\frac{[\text{HgCl}_2]_3}{[\text{HgCl}_2]_2}\right)^m \][/tex]
Plugging in the given values:
[tex]\[ \frac{1.4 \times 10^{-4}}{2.9 \times 10^{-4}} = \left(\frac{0.502}{0.164}\right)^m \][/tex]
Solving for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{\log{\left( \frac{1.4 \times 10^{-4}}{2.9 \times 10^{-4}} \right)}}{\log{\left( \frac{0.502}{0.164} \right)}} \][/tex]
[tex]\[ m = -0.65 \][/tex]
### Step 2: Determine the rate constant [tex]\( k \)[/tex]
Using any of the experiments:
- Experiment 1: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.15 \, M\)[/tex], Rate = [tex]\(3.2 \times 10^{-1} \, M/s\)[/tex]
We can write:
[tex]\[ k = \frac{\text{Rate}}{[\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n} \][/tex]
Plugging in the values from Experiment 1:
[tex]\[ k = \frac{3.2 \times 10^{-1}}{(0.164)^{-0.65} \cdot (0.15)^{-6.38}} \][/tex]
[tex]\[ k = 5.49 \times 10^{-7} \, M^{(m+n)} \, s^{-1} \][/tex]
### Step 3: Calculate the reaction rate for given concentrations
For [tex]\([\text{HgCl}_2] = 0.150 \, M\)[/tex] and [tex]\([\text{C}_2\text{O}_4^{2-}] = 0.25 \, M\)[/tex]:
[tex]\[ \text{Rate} = k [\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n \][/tex]
Plugging in the determined constants:
[tex]\[ \text{Rate} = 5.49 \times 10^{-7} \times (0.150)^{-0.65} \times (0.25)^{-6.38} \][/tex]
[tex]\[ \text{Rate} = 0.013 \, M/s \][/tex]
Therefore, the reaction rate when the concentration of [tex]\(\text{HgCl}_2\)[/tex] is 0.150 M and that of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex] is 0.25 M is [tex]\(0.013 \, M/s\)[/tex].
### Step 1: Determine the reaction orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex]
Assume the rate law for the reaction is:
[tex]\[ \text{Rate} = k [\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n \][/tex]
We will use the given experimental data to determine the orders [tex]\( m \)[/tex] and [tex]\( n \)[/tex].
#### Finding the order with respect to [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex]:
- Experiment 1: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.15 \, M\)[/tex], Rate = [tex]\(3.2 \times 10^{-1} \, M/s\)[/tex]
- Experiment 2: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(2.9 \times 10^{-4} \, M/s\)[/tex]
Since the concentration of [tex]\(\text{HgCl}_2\)[/tex] is the same in both experiments, the change in rate is only due to the change in concentration of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex]. We can write:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_1} = \left(\frac{[\text{C}_2\text{O}_4^{2-}]_2}{[\text{C}_2\text{O}_4^{2-}]_1}\right)^n \][/tex]
Plugging in the given values:
[tex]\[ \frac{2.9 \times 10^{-4}}{3.2 \times 10^{-1}} = \left(\frac{0.45}{0.15}\right)^n \][/tex]
Solving for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\log{\left( \frac{2.9 \times 10^{-4}}{3.2 \times 10^{-1}} \right)}}{\log{\left( \frac{0.45}{0.15} \right)}} \][/tex]
[tex]\[ n = -6.38 \][/tex]
#### Finding the order with respect to [tex]\(\text{HgCl}_2\)[/tex]:
- Experiment 2: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(2.9 \times 10^{-4} \, M/s\)[/tex]
- Experiment 3: [tex]\([\text{HgCl}_2] = 0.502 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.45 \, M\)[/tex], Rate = [tex]\(1.4 \times 10^{-4} \, M/s\)[/tex]
Since the concentration of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex] is the same in both experiments, the change in rate is only due to the change in concentration of [tex]\(\text{HgCl}_2\)[/tex]. We can write:
[tex]\[ \frac{\text{Rate}_3}{\text{Rate}_2} = \left(\frac{[\text{HgCl}_2]_3}{[\text{HgCl}_2]_2}\right)^m \][/tex]
Plugging in the given values:
[tex]\[ \frac{1.4 \times 10^{-4}}{2.9 \times 10^{-4}} = \left(\frac{0.502}{0.164}\right)^m \][/tex]
Solving for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{\log{\left( \frac{1.4 \times 10^{-4}}{2.9 \times 10^{-4}} \right)}}{\log{\left( \frac{0.502}{0.164} \right)}} \][/tex]
[tex]\[ m = -0.65 \][/tex]
### Step 2: Determine the rate constant [tex]\( k \)[/tex]
Using any of the experiments:
- Experiment 1: [tex]\([\text{HgCl}_2] = 0.164 \, M, \, [\text{C}_2\text{O}_4^{2-}] = 0.15 \, M\)[/tex], Rate = [tex]\(3.2 \times 10^{-1} \, M/s\)[/tex]
We can write:
[tex]\[ k = \frac{\text{Rate}}{[\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n} \][/tex]
Plugging in the values from Experiment 1:
[tex]\[ k = \frac{3.2 \times 10^{-1}}{(0.164)^{-0.65} \cdot (0.15)^{-6.38}} \][/tex]
[tex]\[ k = 5.49 \times 10^{-7} \, M^{(m+n)} \, s^{-1} \][/tex]
### Step 3: Calculate the reaction rate for given concentrations
For [tex]\([\text{HgCl}_2] = 0.150 \, M\)[/tex] and [tex]\([\text{C}_2\text{O}_4^{2-}] = 0.25 \, M\)[/tex]:
[tex]\[ \text{Rate} = k [\text{HgCl}_2]^m [\text{C}_2\text{O}_4^{2-}]^n \][/tex]
Plugging in the determined constants:
[tex]\[ \text{Rate} = 5.49 \times 10^{-7} \times (0.150)^{-0.65} \times (0.25)^{-6.38} \][/tex]
[tex]\[ \text{Rate} = 0.013 \, M/s \][/tex]
Therefore, the reaction rate when the concentration of [tex]\(\text{HgCl}_2\)[/tex] is 0.150 M and that of [tex]\(\text{C}_2\text{O}_4^{2-}\)[/tex] is 0.25 M is [tex]\(0.013 \, M/s\)[/tex].
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.