From health tips to tech hacks, find it all on IDNLearn.com. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

The following data were collected for the reaction [tex]CH_3Br (aq) + OH^{-} (aq) \rightarrow CH_3OH (aq) + Br^{-} (aq)[/tex].

\begin{tabular}{|c|c|c|c|}
\hline
Experiment & {[tex]$[CH_3Br]$[/tex] (M)} & {[tex]$[OH^{-}]$[/tex] (M)} & Initial Rate (M/s) \\
\hline
1 & 0.010 & 0.015 & 0.0415 \\
\hline
2 & 0.010 & 0.030 & 0.0830 \\
\hline
3 & 0.030 & 0.015 & 0.125 \\
\hline
\end{tabular}

What is the rate law for the reaction?

A. Rate [tex]$= k[CH_3Br][OH^{-}]^2$[/tex]

B. Rate [tex]$= k[CH_3Br]^2[OH^{-}]$[/tex]

C. Rate [tex]$= k[CH_3Br]^2[OH^{-}]^2$[/tex]

D. Rate [tex]$= k[CH_3Br][OH^{-}]$[/tex]


Sagot :

To determine the rate law for the reaction given the experimental data, we can follow these steps:

### Step 1: Understand the General Rate Law Form
The general rate law for the reaction can be written as:
[tex]\[ \text{Rate} = k[\text{CH}_3\text{Br}]^m[\text{OH}^-]^n \][/tex]

where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the reaction order with respect to [tex]\(\text{CH}_3\text{Br}\)[/tex], and
- [tex]\( n \)[/tex] is the reaction order with respect to [tex]\(\text{OH}^-\)[/tex].

### Step 2: Analyze the Experimental Data

Using the data from the experiments:
1. Experiment 1: [tex]\([ \text{CH}_3\text{Br} ] = 0.010 \, M\)[/tex], [tex]\([ \text{OH}^- ] = 0.015 \, M\)[/tex], Rate = 0.0415 \, M/s
2. Experiment 2: [tex]\([ \text{CH}_3\text{Br} ] = 0.010 \, M\)[/tex], [tex]\([ \text{OH}^- ] = 0.030 \, M\)[/tex], Rate = 0.0830 \, M/s
3. Experiment 3: [tex]\([ \text{CH}_3\text{Br} ] = 0.030 \, M\)[/tex], [tex]\([ \text{OH}^- ] = 0.015 \, M\)[/tex], Rate = 0.125 \, M/s

### Step 3: Determine the Order with Respect to OH⁻ (n)

To find [tex]\( n \)[/tex], we compare experiments where the concentration of [tex]\(\text{CH}_3\text{Br}\)[/tex] is constant and the concentration of [tex]\(\text{OH}^-\)[/tex] changes. Compare Experiments 1 and 2:

- The concentration of [tex]\(\text{CH}_3\text{Br}\)[/tex] is constant (0.010 M).
- The concentration of [tex]\(\text{OH}^-\)[/tex] is doubled from 0.015 M to 0.030 M.
- The rate doubles from 0.0415 M/s to 0.0830 M/s.

Let’s set up the ratio:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_1} = \left(\frac{[\text{OH}^-]_2}{[\text{OH}^-]_1}\right)^n \][/tex]

Substitute the given values:
[tex]\[ \frac{0.0830}{0.0415} = \left(\frac{0.030}{0.015}\right)^n \][/tex]
[tex]\[ 2 = 2^n \][/tex]

From this, it is clear that:
[tex]\[ n = 1 \][/tex]

### Step 4: Determine the Order with Respect to CH₃Br (m)

To find [tex]\( m \)[/tex], we compare experiments where the concentration of [tex]\(\text{OH}^-\)[/tex] is constant and the concentration of [tex]\(\text{CH}_3\text{Br}\)[/tex] changes. Compare Experiments 1 and 3:

- The concentration of [tex]\(\text{OH}^-\)[/tex] is constant (0.015 M).
- The concentration of [tex]\(\text{CH}_3\text{Br}\)[/tex] is tripled from 0.010 M to 0.030 M.
- The rate increases from 0.0415 M/s to 0.125 M/s.

Let’s set up the ratio:
[tex]\[ \frac{\text{Rate}_3}{\text{Rate}_1} = \left(\frac{[\text{CH}_3\text{Br}]_3}{[\text{CH}_3\text{Br}]_1}\right)^m \][/tex]

Substitute the given values:
[tex]\[ \frac{0.125}{0.0415} = \left(\frac{0.030}{0.010}\right)^m \][/tex]
[tex]\[ 3.012048192771084 = 3^m \][/tex]

From this, we solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx 1 \][/tex]

### Step 5: Write the Rate Law
Given [tex]\( m \approx 1 \)[/tex] and [tex]\( n = 1 \)[/tex], the rate law for the reaction is:

[tex]\[ \text{Rate} = k[\text{CH}_3\text{Br}]^1[\text{OH}^-]^1 \][/tex]
[tex]\[ \text{Rate} = k[\text{CH}_3\text{Br}][\text{OH}^-] \][/tex]

This corresponds to the rate law from the given options:
- Option: Rate = [tex]\( k[\text{CH}_3\text{Br}][\text{OH}^-] \)[/tex]