IDNLearn.com: Where your questions meet expert answers and community support. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Let's solve the given questions step by step:
### Part (a)
If two angles of a triangle are [tex]\(45^\circ\)[/tex] and [tex]\(\left(\frac{\pi}{6}\right)^c\)[/tex], we need to find the remaining angle in degrees.
1. Identify the given angles:
- First angle [tex]\(\angle A = 45^\circ\)[/tex].
- Second angle [tex]\(\angle B = \left(\frac{\pi}{6}\right)^c\)[/tex].
2. Simplify the exponent:
- Assume [tex]\(c = 1\)[/tex] (for simplicity in the given context).
- Then, [tex]\(\angle B = \left(\frac{\pi}{6}\right)^1 = \frac{\pi}{6}\)[/tex].
3. Convert [tex]\(\angle B\)[/tex] to degrees:
- We know that [tex]\(1 \text{ radian} = \frac{180}{\pi}\)[/tex] degrees.
- So, [tex]\(\frac{\pi}{6} \times \frac{180}{\pi} = 30^\circ\)[/tex].
4. Find the remaining angle:
- The sum of angles in a triangle is [tex]\(180^\circ\)[/tex].
- Therefore, the remaining angle [tex]\(\angle C = 180^\circ - 45^\circ - 30^\circ = 105^\circ\)[/tex].
So, the remaining angle is 105°.
### Part (b)
If one angle of a right-angled triangle is [tex]\(25^\circ\)[/tex], find the remaining angle in radian measure.
1. Identify the given angles:
- One right angle, [tex]\(\angle A = 90^\circ\)[/tex].
- Second angle [tex]\(\angle B = 25^\circ\)[/tex].
2. Find the remaining angle:
- The remaining angle in a right-angled triangle [tex]\(\angle C = 90^\circ - 25^\circ = 65^\circ\)[/tex].
3. Convert the remaining angle to radians:
- [tex]\(\angle C \)[/tex] in radians is [tex]\(65^\circ \times \frac{\pi}{180} = \frac{65 \pi}{180} = \frac{13 \pi}{36}\)[/tex].
So, the remaining angle in radian measure is approximately 1.134 rad.
### Part (c)
Two acute angles of a right-angled triangle are [tex]\(63^\circ\)[/tex] and [tex]\(30^3\)[/tex]. Express all angles in radian.
1. Identify the given angles:
- Acute angle [tex]\(\angle A = 63^\circ\)[/tex].
- Acute angle [tex]\(\angle B = 30^3 = 30^3\)[/tex].
2. Actual computation for second acute angle:
- [tex]\(30^3 = 27000^\circ\)[/tex].
3. Right angle:
- The right angle [tex]\(\angle C = 90^\circ\)[/tex] in the triangle.
4. Convert all angles to radians:
- [tex]\(\angle A = 63^\circ \times \frac{\pi}{180} = \frac{63 \pi}{180} = \frac{7 \pi}{20}\)[/tex] approx [tex]\(1.1 \text{ radians}\)[/tex].
- [tex]\(\angle B = 27000^\circ \times \frac{\pi}{180} = 150 \pi \approx 471.2389 \text{ radians}\)[/tex].
- [tex]\(\angle C = 90^\circ \times \frac{\pi}{180} = \frac{\pi}{2} \approx 1.57 \text{ radians}\)[/tex].
So, the angles in radians are approximately [tex]\((1.1, 471.2389, 1.57)\)[/tex].
### Proofs
#### Proof 1:
If [tex]\(D\)[/tex] and [tex]\(G\)[/tex] are the number of degrees and grades of the same angle, then [tex]\(\frac{G}{10} = \frac{D}{9}\)[/tex].
1. Relation between degrees and grades:
- [tex]\(1 \text{ grade} = \frac{9}{10} \text{ degrees}\)[/tex].
2. Express [tex]\(G\)[/tex] in terms of [tex]\(D\)[/tex]:
- [tex]\(G = \frac{10D}{9}\)[/tex].
3. Divide both sides by 10:
- [tex]\(\frac{G}{10} = \frac{10D}{9} \divide 10 = \frac{D}{9}\)[/tex].
Hence, [tex]\(\frac{G}{10} = \frac{D}{9}\)[/tex] is proved.
#### Proof 2:
If [tex]\(M\)[/tex] and [tex]\(m\)[/tex] represent the number of sexagesimal and centesimal minutes of any angle respectively, prove that [tex]\(\frac{M}{27} = \frac{m}{50}\)[/tex].
1. Define the relations:
- [tex]\(1 \text{ sexagesimal minute} = \frac{1}{60} \text{ degrees}\)[/tex].
- [tex]\(1 \text{ centesimal minute} = \frac{1}{100} \text{ grades} = \frac{1}{100} \times \frac{9}{10} \text{ degrees} = 0.009 \text{ degrees}\)[/tex].
2. Express [tex]\(M\)[/tex] in terms of [tex]\(m\)[/tex]:
- [tex]\(M = m \times 0.54\)[/tex].
3. Divide both sides appropriately:
- [tex]\(\frac{M}{27} = \frac{m \times 0.54}{27} = \frac{m \times 0.54 \divide 0.54}{27 \divide 0.54} = \frac{m}{50}\)[/tex].
Hence, [tex]\(\frac{M}{27} = \frac{m}{50}\)[/tex] is proved.
### Part (a)
If two angles of a triangle are [tex]\(45^\circ\)[/tex] and [tex]\(\left(\frac{\pi}{6}\right)^c\)[/tex], we need to find the remaining angle in degrees.
1. Identify the given angles:
- First angle [tex]\(\angle A = 45^\circ\)[/tex].
- Second angle [tex]\(\angle B = \left(\frac{\pi}{6}\right)^c\)[/tex].
2. Simplify the exponent:
- Assume [tex]\(c = 1\)[/tex] (for simplicity in the given context).
- Then, [tex]\(\angle B = \left(\frac{\pi}{6}\right)^1 = \frac{\pi}{6}\)[/tex].
3. Convert [tex]\(\angle B\)[/tex] to degrees:
- We know that [tex]\(1 \text{ radian} = \frac{180}{\pi}\)[/tex] degrees.
- So, [tex]\(\frac{\pi}{6} \times \frac{180}{\pi} = 30^\circ\)[/tex].
4. Find the remaining angle:
- The sum of angles in a triangle is [tex]\(180^\circ\)[/tex].
- Therefore, the remaining angle [tex]\(\angle C = 180^\circ - 45^\circ - 30^\circ = 105^\circ\)[/tex].
So, the remaining angle is 105°.
### Part (b)
If one angle of a right-angled triangle is [tex]\(25^\circ\)[/tex], find the remaining angle in radian measure.
1. Identify the given angles:
- One right angle, [tex]\(\angle A = 90^\circ\)[/tex].
- Second angle [tex]\(\angle B = 25^\circ\)[/tex].
2. Find the remaining angle:
- The remaining angle in a right-angled triangle [tex]\(\angle C = 90^\circ - 25^\circ = 65^\circ\)[/tex].
3. Convert the remaining angle to radians:
- [tex]\(\angle C \)[/tex] in radians is [tex]\(65^\circ \times \frac{\pi}{180} = \frac{65 \pi}{180} = \frac{13 \pi}{36}\)[/tex].
So, the remaining angle in radian measure is approximately 1.134 rad.
### Part (c)
Two acute angles of a right-angled triangle are [tex]\(63^\circ\)[/tex] and [tex]\(30^3\)[/tex]. Express all angles in radian.
1. Identify the given angles:
- Acute angle [tex]\(\angle A = 63^\circ\)[/tex].
- Acute angle [tex]\(\angle B = 30^3 = 30^3\)[/tex].
2. Actual computation for second acute angle:
- [tex]\(30^3 = 27000^\circ\)[/tex].
3. Right angle:
- The right angle [tex]\(\angle C = 90^\circ\)[/tex] in the triangle.
4. Convert all angles to radians:
- [tex]\(\angle A = 63^\circ \times \frac{\pi}{180} = \frac{63 \pi}{180} = \frac{7 \pi}{20}\)[/tex] approx [tex]\(1.1 \text{ radians}\)[/tex].
- [tex]\(\angle B = 27000^\circ \times \frac{\pi}{180} = 150 \pi \approx 471.2389 \text{ radians}\)[/tex].
- [tex]\(\angle C = 90^\circ \times \frac{\pi}{180} = \frac{\pi}{2} \approx 1.57 \text{ radians}\)[/tex].
So, the angles in radians are approximately [tex]\((1.1, 471.2389, 1.57)\)[/tex].
### Proofs
#### Proof 1:
If [tex]\(D\)[/tex] and [tex]\(G\)[/tex] are the number of degrees and grades of the same angle, then [tex]\(\frac{G}{10} = \frac{D}{9}\)[/tex].
1. Relation between degrees and grades:
- [tex]\(1 \text{ grade} = \frac{9}{10} \text{ degrees}\)[/tex].
2. Express [tex]\(G\)[/tex] in terms of [tex]\(D\)[/tex]:
- [tex]\(G = \frac{10D}{9}\)[/tex].
3. Divide both sides by 10:
- [tex]\(\frac{G}{10} = \frac{10D}{9} \divide 10 = \frac{D}{9}\)[/tex].
Hence, [tex]\(\frac{G}{10} = \frac{D}{9}\)[/tex] is proved.
#### Proof 2:
If [tex]\(M\)[/tex] and [tex]\(m\)[/tex] represent the number of sexagesimal and centesimal minutes of any angle respectively, prove that [tex]\(\frac{M}{27} = \frac{m}{50}\)[/tex].
1. Define the relations:
- [tex]\(1 \text{ sexagesimal minute} = \frac{1}{60} \text{ degrees}\)[/tex].
- [tex]\(1 \text{ centesimal minute} = \frac{1}{100} \text{ grades} = \frac{1}{100} \times \frac{9}{10} \text{ degrees} = 0.009 \text{ degrees}\)[/tex].
2. Express [tex]\(M\)[/tex] in terms of [tex]\(m\)[/tex]:
- [tex]\(M = m \times 0.54\)[/tex].
3. Divide both sides appropriately:
- [tex]\(\frac{M}{27} = \frac{m \times 0.54}{27} = \frac{m \times 0.54 \divide 0.54}{27 \divide 0.54} = \frac{m}{50}\)[/tex].
Hence, [tex]\(\frac{M}{27} = \frac{m}{50}\)[/tex] is proved.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.