Explore a wide range of topics and get answers from experts on IDNLearn.com. Join our Q&A platform to access reliable and detailed answers from experts in various fields.

What will be the gravitational force between two bodies if the mass of each is doubled, and the distance between them is halved? Show your calculations.

Sagot :

Certainly! Let's work through this step by step. We will use Newton's law of gravitation which states that the gravitational force (F) between two masses is given by:

[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]

where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex] kg[tex]\(^{-1}\)[/tex] s[tex]\(^{-2}\)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two bodies,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.

### Step 1: Initial Setup

Initially, we start with:
- [tex]\( m_1 = 1 \)[/tex] kg
- [tex]\( m_2 = 1 \)[/tex] kg
- [tex]\( r = 1 \)[/tex] m

Using these values, we can calculate the initial gravitational force:
[tex]\[ F_{\text{initial}} = G \frac{m_1 m_2}{r^2} \][/tex]

Substitute [tex]\( G \)[/tex], [tex]\( m_1 \)[/tex], [tex]\( m_2 \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F_{\text{initial}} = 6.67430 \times 10^{-11} \frac{1 \times 1}{1^2} = 6.67430 \times 10^{-11} \, \text{N} \][/tex]

### Step 2: Changing Masses and Distance

Now, if we double the masses and halve the distance, we have:
- [tex]\( m_1' = 2 \times m_1 = 2 \times 1 = 2 \)[/tex] kg
- [tex]\( m_2' = 2 \times m_2 = 2 \times 1 = 2 \)[/tex] kg
- [tex]\( r' = \frac{r}{2} = \frac{1}{2} \)[/tex] m

Substituting these changed values back into the gravitational force formula, we get the new force ([tex]\( F_{\text{new}} \)[/tex]):
[tex]\[ F_{\text{new}} = G \frac{m_1' m_2'}{r'^2} \][/tex]

### Step 3: Calculating the New Force

Substitute [tex]\( G \)[/tex], [tex]\( m_1' \)[/tex], [tex]\( m_2' \)[/tex], and [tex]\( r' \)[/tex]:
[tex]\[ F_{\text{new}} = 6.67430 \times 10^{-11} \frac{2 \times 2}{(\frac{1}{2})^2} \][/tex]

First, compute the numerator and the denominator inside the fraction separately:
[tex]\[ F_{\text{new}} = 6.67430 \times 10^{-11} \frac{4}{(\frac{1}{2})^2} \][/tex]
[tex]\[ (\frac{1}{2})^2 = \frac{1}{4} \][/tex]

Now:
[tex]\[ F_{\text{new}} = 6.67430 \times 10^{-11} \frac{4}{\frac{1}{4}} \][/tex]

Simplify the fraction:
[tex]\[ \frac{4}{\frac{1}{4}} = 4 \times 4 = 16 \][/tex]

So:
[tex]\[ F_{\text{new}} = 6.67430 \times 10^{-11} \times 16 \][/tex]

Finally, calculate the product:
[tex]\[ F_{\text{new}} = 1.067888 \times 10^{-9} \, \text{N} \][/tex]

### Summary

- The initial gravitational force between the two bodies was:
[tex]\[ 6.67430 \times 10^{-11} \, \text{N} \][/tex]

- The new gravitational force, after doubling the masses and halving the distance, is:
[tex]\[ 1.067888 \times 10^{-9} \, \text{N} \][/tex]

Thus, the result demonstrates a significant increase in the gravitational force when both masses are doubled and the distance between them is halved.