IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Step 1: Convert charges from microCoulombs (iC) to Coulombs (C)
Given charges:
- [tex]\( q_1 = 15 \, \mu\text{C} \)[/tex]
- [tex]\( q_2 = -17 \, \mu\text{C} \)[/tex]
Since [tex]\( 1 \, \mu\text{C} = 1 \times 10^{-6} \, \text{C} \)[/tex]:
[tex]\[ q_1 = 15 \times 10^{-6} \, \text{C} = 15 \times 10^{-6} \, \text{C} \][/tex]
[tex]\[ q_2 = -17 \times 10^{-6} \, \text{C} = -17 \times 10^{-6} \, \text{C} \][/tex]
### Step 2: Calculate the total charge enclosed by the surface
The total charge enclosed, [tex]\( q_{\text{total}} \)[/tex], is the sum of both charges:
[tex]\[ q_{\text{total}} = q_1 + q_2 = 15 \times 10^{-6} \, \text{C} + (-17 \times 10^{-6} \, \text{C}) \][/tex]
[tex]\[ q_{\text{total}} = (15 - 17) \times 10^{-6} \, \text{C} = -2 \times 10^{-6} \, \text{C} \][/tex]
### Step 3: Use Gauss's Law to calculate the total electric flux
Gauss's Law states that the total electric flux, [tex]\( \Phi_E \)[/tex], through a closed surface is equal to the total charge enclosed divided by the electric constant, [tex]\( \epsilon_0 \)[/tex]:
[tex]\[ \Phi_E = \frac{q_{\text{total}}}{\epsilon_0} \][/tex]
The electric constant [tex]\( \epsilon_0 \)[/tex] is approximately [tex]\( 8.854 \times 10^{-12} \, \text{C}^2/(\text{N} \cdot \text{m}^2) \)[/tex]:
[tex]\[ \Phi_E = \frac{-2 \times 10^{-6} \, \text{C}}{8.854 \times 10^{-12} \, \text{C}^2/(\text{N} \cdot \text{m}^2)} \][/tex]
### Step 4: Calculate the numerical value of the flux
[tex]\[ \Phi_E = -2 \times 10^{-6} \, \text{C} \div 8.854 \times 10^{-12} \, \text{C}^2/(\text{N} \cdot \text{m}^2) \][/tex]
Performing the division:
[tex]\[ \Phi_E \approx -225886.60492432796 \, \text{N} \cdot \text{m}^2/\text{C} \][/tex]
### Step 5: Convert the flux into the desired units (Nm²/C)
To match the comparable form, we convert the flux to [tex]\( Nm²C^{-1} \)[/tex] by multiplying by [tex]\( 10^{-4} \)[/tex]:
[tex]\[ \Phi_{\text{comparable}} = -225886.60492432796 \times 10^{-4} \, \text{Nm}^2/\text{C} = -22.588660492432798 \, \text{Nm}^2/\text{C} \][/tex]
### Conclusion
Given the options provided:
a. 1.321
b. 6.284
c. 1.321
d. 0
None of the options directly match the calculated value of [tex]\( -22.588660492432798 \, \text{Nm}^2 \text{C}^{-1} \)[/tex] so it seems there might be a mistake in the given options or further context is required to match the calculated result.
### Step 1: Convert charges from microCoulombs (iC) to Coulombs (C)
Given charges:
- [tex]\( q_1 = 15 \, \mu\text{C} \)[/tex]
- [tex]\( q_2 = -17 \, \mu\text{C} \)[/tex]
Since [tex]\( 1 \, \mu\text{C} = 1 \times 10^{-6} \, \text{C} \)[/tex]:
[tex]\[ q_1 = 15 \times 10^{-6} \, \text{C} = 15 \times 10^{-6} \, \text{C} \][/tex]
[tex]\[ q_2 = -17 \times 10^{-6} \, \text{C} = -17 \times 10^{-6} \, \text{C} \][/tex]
### Step 2: Calculate the total charge enclosed by the surface
The total charge enclosed, [tex]\( q_{\text{total}} \)[/tex], is the sum of both charges:
[tex]\[ q_{\text{total}} = q_1 + q_2 = 15 \times 10^{-6} \, \text{C} + (-17 \times 10^{-6} \, \text{C}) \][/tex]
[tex]\[ q_{\text{total}} = (15 - 17) \times 10^{-6} \, \text{C} = -2 \times 10^{-6} \, \text{C} \][/tex]
### Step 3: Use Gauss's Law to calculate the total electric flux
Gauss's Law states that the total electric flux, [tex]\( \Phi_E \)[/tex], through a closed surface is equal to the total charge enclosed divided by the electric constant, [tex]\( \epsilon_0 \)[/tex]:
[tex]\[ \Phi_E = \frac{q_{\text{total}}}{\epsilon_0} \][/tex]
The electric constant [tex]\( \epsilon_0 \)[/tex] is approximately [tex]\( 8.854 \times 10^{-12} \, \text{C}^2/(\text{N} \cdot \text{m}^2) \)[/tex]:
[tex]\[ \Phi_E = \frac{-2 \times 10^{-6} \, \text{C}}{8.854 \times 10^{-12} \, \text{C}^2/(\text{N} \cdot \text{m}^2)} \][/tex]
### Step 4: Calculate the numerical value of the flux
[tex]\[ \Phi_E = -2 \times 10^{-6} \, \text{C} \div 8.854 \times 10^{-12} \, \text{C}^2/(\text{N} \cdot \text{m}^2) \][/tex]
Performing the division:
[tex]\[ \Phi_E \approx -225886.60492432796 \, \text{N} \cdot \text{m}^2/\text{C} \][/tex]
### Step 5: Convert the flux into the desired units (Nm²/C)
To match the comparable form, we convert the flux to [tex]\( Nm²C^{-1} \)[/tex] by multiplying by [tex]\( 10^{-4} \)[/tex]:
[tex]\[ \Phi_{\text{comparable}} = -225886.60492432796 \times 10^{-4} \, \text{Nm}^2/\text{C} = -22.588660492432798 \, \text{Nm}^2/\text{C} \][/tex]
### Conclusion
Given the options provided:
a. 1.321
b. 6.284
c. 1.321
d. 0
None of the options directly match the calculated value of [tex]\( -22.588660492432798 \, \text{Nm}^2 \text{C}^{-1} \)[/tex] so it seems there might be a mistake in the given options or further context is required to match the calculated result.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.