Get the information you need with the help of IDNLearn.com's expert community. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
Certainly! Let's determine the symbol of the unknown metal [tex]\( M \)[/tex] through a step-by-step calculation:
### Step-by-Step Calculation:
1. Volume and Concentration of Sodium Hydroxide Solution:
- Volume of NaOH solution: [tex]\( 25 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 25 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.025 \, \text{dm}^3 \)[/tex]
- Concentration of NaOH solution: [tex]\( 0.8 \, \text{mol} \cdot \text{dm}^{-3} \)[/tex]
2. Calculate the Moles of NaOH:
- Using the formula [tex]\( \text{moles} = \text{volume} \times \text{concentration} \)[/tex]:
[tex]\[ \text{moles of NaOH} = 0.025 \, \text{dm}^3 \times 0.8 \, \text{mol} \cdot \text{dm}^{-3} = 0.020 \, \text{mol} \][/tex]
3. Determining the Moles of Excess HCl:
- Since NaOH reacts with HCl in a 1:1 molar ratio:
[tex]\[ \text{moles of excess HCl} = \text{moles of NaOH} = 0.020 \, \text{mol} \][/tex]
4. Initial Moles of HCl:
- Volume of HCl solution: [tex]\( 100 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 100 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.1 \, \text{dm}^3 \)[/tex]
- The solution is in excess, and the neutralized amount is the excess moles:
[tex]\[ \text{initial moles of HCl} = \text{moles of excess HCl} + \text{moles of NaOH} \][/tex]
[tex]\[ \text{initial moles of HCl} = 0.020 \, \text{mol} + 0.020 \, \text{mol} = 0.040 \, \text{mol} \][/tex]
5. HCl That Reacted with [tex]\( MCO_3 \)[/tex]:
- Moles of HCl that reacted with [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of HCl reacted} = \text{initial moles of HCl} - \text{moles of excess HCl} = 0.040 \, \text{mol} - 0.020 \, \text{mol} = 0.020 \, \text{mol} \][/tex]
6. Moles of [tex]\( MCO_3 \)[/tex]:
- Based on the balanced chemical equation:
[tex]\[ MCO_3 + 2HCl \rightarrow \text{products} \][/tex]
- It takes 2 moles of HCl to react with 1 mole of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of } MCO_3 = \frac{\text{moles of HCl reacted}}{2} = \frac{0.020 \, \text{mol}}{2} = 0.010 \, \text{mol} \][/tex]
7. Finding the Molar Mass of [tex]\( MCO_3 \)[/tex]:
- Given mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 3.5 \, \text{g} \)[/tex]
- Using the formula [tex]\( \text{molar mass} = \frac{\text{mass}}{\text{moles}} \)[/tex]:
[tex]\[ \text{molar mass of } MCO_3 = \frac{3.5 \, \text{g}}{0.010 \, \text{mol}} = 350 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
8. Finding the Molar Mass of the Metal [tex]\( M \)[/tex]:
- Molar mass of [tex]\( CO_3 \)[/tex]: [tex]\( 12 \, (\text{C}) + 16 \times 3 \, (\text{O}) = 60 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 350 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of metal [tex]\( M \)[/tex] is found by subtracting molar mass of [tex]\( CO_3 \)[/tex] from molar mass of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{Molar mass of } M = 350 \, \text{g} \cdot \text{mol}^{-1} - 60 \, \text{g} \cdot \text{mol}^{-1} = 290 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
### Conclusion:
The molar mass of the unknown metal [tex]\( M \)[/tex] is [tex]\( 290 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]. Given this specific molar mass, the metal is likely to be Rhenium ([tex]\( \text{Re} \)[/tex]), which has a molar mass close to 290 g/mol.
Therefore, the symbol of the unknown metal [tex]\( M \)[/tex] is [tex]\( \text{Re} \)[/tex].
### Step-by-Step Calculation:
1. Volume and Concentration of Sodium Hydroxide Solution:
- Volume of NaOH solution: [tex]\( 25 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 25 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.025 \, \text{dm}^3 \)[/tex]
- Concentration of NaOH solution: [tex]\( 0.8 \, \text{mol} \cdot \text{dm}^{-3} \)[/tex]
2. Calculate the Moles of NaOH:
- Using the formula [tex]\( \text{moles} = \text{volume} \times \text{concentration} \)[/tex]:
[tex]\[ \text{moles of NaOH} = 0.025 \, \text{dm}^3 \times 0.8 \, \text{mol} \cdot \text{dm}^{-3} = 0.020 \, \text{mol} \][/tex]
3. Determining the Moles of Excess HCl:
- Since NaOH reacts with HCl in a 1:1 molar ratio:
[tex]\[ \text{moles of excess HCl} = \text{moles of NaOH} = 0.020 \, \text{mol} \][/tex]
4. Initial Moles of HCl:
- Volume of HCl solution: [tex]\( 100 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 100 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.1 \, \text{dm}^3 \)[/tex]
- The solution is in excess, and the neutralized amount is the excess moles:
[tex]\[ \text{initial moles of HCl} = \text{moles of excess HCl} + \text{moles of NaOH} \][/tex]
[tex]\[ \text{initial moles of HCl} = 0.020 \, \text{mol} + 0.020 \, \text{mol} = 0.040 \, \text{mol} \][/tex]
5. HCl That Reacted with [tex]\( MCO_3 \)[/tex]:
- Moles of HCl that reacted with [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of HCl reacted} = \text{initial moles of HCl} - \text{moles of excess HCl} = 0.040 \, \text{mol} - 0.020 \, \text{mol} = 0.020 \, \text{mol} \][/tex]
6. Moles of [tex]\( MCO_3 \)[/tex]:
- Based on the balanced chemical equation:
[tex]\[ MCO_3 + 2HCl \rightarrow \text{products} \][/tex]
- It takes 2 moles of HCl to react with 1 mole of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of } MCO_3 = \frac{\text{moles of HCl reacted}}{2} = \frac{0.020 \, \text{mol}}{2} = 0.010 \, \text{mol} \][/tex]
7. Finding the Molar Mass of [tex]\( MCO_3 \)[/tex]:
- Given mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 3.5 \, \text{g} \)[/tex]
- Using the formula [tex]\( \text{molar mass} = \frac{\text{mass}}{\text{moles}} \)[/tex]:
[tex]\[ \text{molar mass of } MCO_3 = \frac{3.5 \, \text{g}}{0.010 \, \text{mol}} = 350 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
8. Finding the Molar Mass of the Metal [tex]\( M \)[/tex]:
- Molar mass of [tex]\( CO_3 \)[/tex]: [tex]\( 12 \, (\text{C}) + 16 \times 3 \, (\text{O}) = 60 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 350 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of metal [tex]\( M \)[/tex] is found by subtracting molar mass of [tex]\( CO_3 \)[/tex] from molar mass of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{Molar mass of } M = 350 \, \text{g} \cdot \text{mol}^{-1} - 60 \, \text{g} \cdot \text{mol}^{-1} = 290 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
### Conclusion:
The molar mass of the unknown metal [tex]\( M \)[/tex] is [tex]\( 290 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]. Given this specific molar mass, the metal is likely to be Rhenium ([tex]\( \text{Re} \)[/tex]), which has a molar mass close to 290 g/mol.
Therefore, the symbol of the unknown metal [tex]\( M \)[/tex] is [tex]\( \text{Re} \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.