Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
Certainly! Let's determine the symbol of the unknown metal [tex]\( M \)[/tex] through a step-by-step calculation:
### Step-by-Step Calculation:
1. Volume and Concentration of Sodium Hydroxide Solution:
- Volume of NaOH solution: [tex]\( 25 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 25 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.025 \, \text{dm}^3 \)[/tex]
- Concentration of NaOH solution: [tex]\( 0.8 \, \text{mol} \cdot \text{dm}^{-3} \)[/tex]
2. Calculate the Moles of NaOH:
- Using the formula [tex]\( \text{moles} = \text{volume} \times \text{concentration} \)[/tex]:
[tex]\[ \text{moles of NaOH} = 0.025 \, \text{dm}^3 \times 0.8 \, \text{mol} \cdot \text{dm}^{-3} = 0.020 \, \text{mol} \][/tex]
3. Determining the Moles of Excess HCl:
- Since NaOH reacts with HCl in a 1:1 molar ratio:
[tex]\[ \text{moles of excess HCl} = \text{moles of NaOH} = 0.020 \, \text{mol} \][/tex]
4. Initial Moles of HCl:
- Volume of HCl solution: [tex]\( 100 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 100 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.1 \, \text{dm}^3 \)[/tex]
- The solution is in excess, and the neutralized amount is the excess moles:
[tex]\[ \text{initial moles of HCl} = \text{moles of excess HCl} + \text{moles of NaOH} \][/tex]
[tex]\[ \text{initial moles of HCl} = 0.020 \, \text{mol} + 0.020 \, \text{mol} = 0.040 \, \text{mol} \][/tex]
5. HCl That Reacted with [tex]\( MCO_3 \)[/tex]:
- Moles of HCl that reacted with [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of HCl reacted} = \text{initial moles of HCl} - \text{moles of excess HCl} = 0.040 \, \text{mol} - 0.020 \, \text{mol} = 0.020 \, \text{mol} \][/tex]
6. Moles of [tex]\( MCO_3 \)[/tex]:
- Based on the balanced chemical equation:
[tex]\[ MCO_3 + 2HCl \rightarrow \text{products} \][/tex]
- It takes 2 moles of HCl to react with 1 mole of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of } MCO_3 = \frac{\text{moles of HCl reacted}}{2} = \frac{0.020 \, \text{mol}}{2} = 0.010 \, \text{mol} \][/tex]
7. Finding the Molar Mass of [tex]\( MCO_3 \)[/tex]:
- Given mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 3.5 \, \text{g} \)[/tex]
- Using the formula [tex]\( \text{molar mass} = \frac{\text{mass}}{\text{moles}} \)[/tex]:
[tex]\[ \text{molar mass of } MCO_3 = \frac{3.5 \, \text{g}}{0.010 \, \text{mol}} = 350 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
8. Finding the Molar Mass of the Metal [tex]\( M \)[/tex]:
- Molar mass of [tex]\( CO_3 \)[/tex]: [tex]\( 12 \, (\text{C}) + 16 \times 3 \, (\text{O}) = 60 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 350 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of metal [tex]\( M \)[/tex] is found by subtracting molar mass of [tex]\( CO_3 \)[/tex] from molar mass of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{Molar mass of } M = 350 \, \text{g} \cdot \text{mol}^{-1} - 60 \, \text{g} \cdot \text{mol}^{-1} = 290 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
### Conclusion:
The molar mass of the unknown metal [tex]\( M \)[/tex] is [tex]\( 290 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]. Given this specific molar mass, the metal is likely to be Rhenium ([tex]\( \text{Re} \)[/tex]), which has a molar mass close to 290 g/mol.
Therefore, the symbol of the unknown metal [tex]\( M \)[/tex] is [tex]\( \text{Re} \)[/tex].
### Step-by-Step Calculation:
1. Volume and Concentration of Sodium Hydroxide Solution:
- Volume of NaOH solution: [tex]\( 25 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 25 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.025 \, \text{dm}^3 \)[/tex]
- Concentration of NaOH solution: [tex]\( 0.8 \, \text{mol} \cdot \text{dm}^{-3} \)[/tex]
2. Calculate the Moles of NaOH:
- Using the formula [tex]\( \text{moles} = \text{volume} \times \text{concentration} \)[/tex]:
[tex]\[ \text{moles of NaOH} = 0.025 \, \text{dm}^3 \times 0.8 \, \text{mol} \cdot \text{dm}^{-3} = 0.020 \, \text{mol} \][/tex]
3. Determining the Moles of Excess HCl:
- Since NaOH reacts with HCl in a 1:1 molar ratio:
[tex]\[ \text{moles of excess HCl} = \text{moles of NaOH} = 0.020 \, \text{mol} \][/tex]
4. Initial Moles of HCl:
- Volume of HCl solution: [tex]\( 100 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 100 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.1 \, \text{dm}^3 \)[/tex]
- The solution is in excess, and the neutralized amount is the excess moles:
[tex]\[ \text{initial moles of HCl} = \text{moles of excess HCl} + \text{moles of NaOH} \][/tex]
[tex]\[ \text{initial moles of HCl} = 0.020 \, \text{mol} + 0.020 \, \text{mol} = 0.040 \, \text{mol} \][/tex]
5. HCl That Reacted with [tex]\( MCO_3 \)[/tex]:
- Moles of HCl that reacted with [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of HCl reacted} = \text{initial moles of HCl} - \text{moles of excess HCl} = 0.040 \, \text{mol} - 0.020 \, \text{mol} = 0.020 \, \text{mol} \][/tex]
6. Moles of [tex]\( MCO_3 \)[/tex]:
- Based on the balanced chemical equation:
[tex]\[ MCO_3 + 2HCl \rightarrow \text{products} \][/tex]
- It takes 2 moles of HCl to react with 1 mole of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of } MCO_3 = \frac{\text{moles of HCl reacted}}{2} = \frac{0.020 \, \text{mol}}{2} = 0.010 \, \text{mol} \][/tex]
7. Finding the Molar Mass of [tex]\( MCO_3 \)[/tex]:
- Given mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 3.5 \, \text{g} \)[/tex]
- Using the formula [tex]\( \text{molar mass} = \frac{\text{mass}}{\text{moles}} \)[/tex]:
[tex]\[ \text{molar mass of } MCO_3 = \frac{3.5 \, \text{g}}{0.010 \, \text{mol}} = 350 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
8. Finding the Molar Mass of the Metal [tex]\( M \)[/tex]:
- Molar mass of [tex]\( CO_3 \)[/tex]: [tex]\( 12 \, (\text{C}) + 16 \times 3 \, (\text{O}) = 60 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 350 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of metal [tex]\( M \)[/tex] is found by subtracting molar mass of [tex]\( CO_3 \)[/tex] from molar mass of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{Molar mass of } M = 350 \, \text{g} \cdot \text{mol}^{-1} - 60 \, \text{g} \cdot \text{mol}^{-1} = 290 \, \text{g} \cdot \text{mol}^{-1} \][/tex]
### Conclusion:
The molar mass of the unknown metal [tex]\( M \)[/tex] is [tex]\( 290 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]. Given this specific molar mass, the metal is likely to be Rhenium ([tex]\( \text{Re} \)[/tex]), which has a molar mass close to 290 g/mol.
Therefore, the symbol of the unknown metal [tex]\( M \)[/tex] is [tex]\( \text{Re} \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.