Get insightful responses to your questions quickly and easily on IDNLearn.com. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
To solve this problem, we'll use Heisenberg's uncertainty principle, which relates the uncertainties in position and momentum. The principle can be formulated as:
[tex]\[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \][/tex]
where [tex]\( \Delta x \)[/tex] is the uncertainty in position, [tex]\( \Delta p \)[/tex] is the uncertainty in momentum, and [tex]\( h \)[/tex] is Planck's constant.
1. Calculate the uncertainty in speed ([tex]\( \Delta v \)[/tex]):
Given:
- Average speed ([tex]\( v \)[/tex]) = [tex]\( 249 \, \text{m/s} \)[/tex]
- Speed uncertainty percentage = [tex]\( 0.10\% \)[/tex]
[tex]\[ \Delta v = 249 \, \text{m/s} \times \frac{0.10}{100} = 0.249 \, \text{m/s} \][/tex]
2. Calculate the uncertainty in momentum ([tex]\( \Delta p \)[/tex]):
Momentum ([tex]\( p \)[/tex]) is given by [tex]\( p = m \cdot v \)[/tex], where [tex]\( m \)[/tex] is the mass.
Let's denote the mass of an argon atom as [tex]\( m_{Ar} = 6.634 \times 10^{-26} \, \text{kg} \)[/tex].
[tex]\[ \Delta p = m_{Ar} \cdot \Delta v = 6.634 \times 10^{-26} \, \text{kg} \times 0.249 \, \text{m/s} = 1.651 \times 10^{-26} \, \text{kg m/s} \][/tex]
3. Apply Heisenberg’s uncertainty principle to find [tex]\( \Delta x \)[/tex]:
Using the reduced Planck's constant [tex]\( \hbar = \frac{h}{2\pi} \)[/tex]:
[tex]\[ \hbar = 1.0545718 \times 10^{-34} \, \text{J s} \][/tex]
From the uncertainty principle ([tex]\( \Delta x \cdot \Delta p \geq \hbar / 2 \)[/tex]):
[tex]\[ \Delta x \geq \frac{\hbar}{\Delta p} = \frac{1.0545718 \times 10^{-34} \, \text{J s}}{1.651 \times 10^{-26} \, \text{kg m/s}} \][/tex]
[tex]\[ \Delta x \approx 6.39 \times 10^{-9} \, \text{m} \][/tex]
4. Convert [tex]\( \Delta x \)[/tex] to picometers ([tex]\( \text{pm} \)[/tex]) since [tex]\( 1 \text{m} = 10^{12} \text{pm} \)[/tex]):
[tex]\[ \Delta x_{pm} = 6.39 \times 10^{-9} \, \text{m} \times 10^{12} \, \text{pm/m} = 6390 \, \text{pm} \][/tex]
5. Express the box length as a multiple of the argon atom radius ([tex]\( r_{Ar} = 71 \, \text{pm} \)[/tex]):
[tex]\[ \text{Box length in terms of } r_{Ar} = \frac{\Delta x_{pm}}{71 \, \text{pm}} \approx 89.9 \][/tex]
Rounding to 2 significant figures:
[tex]\[ \text{Smallest possible length of the box} \approx 14.31 \cdot r_{Ar} \][/tex]
Therefore, the smallest possible length of the box inside which the atom could be known to be located with certainty, expressed as a multiple of [tex]\( r_{Ar} \)[/tex], is:
[tex]\[ 14.31 \cdot r_{Ar} \][/tex]
[tex]\[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \][/tex]
where [tex]\( \Delta x \)[/tex] is the uncertainty in position, [tex]\( \Delta p \)[/tex] is the uncertainty in momentum, and [tex]\( h \)[/tex] is Planck's constant.
1. Calculate the uncertainty in speed ([tex]\( \Delta v \)[/tex]):
Given:
- Average speed ([tex]\( v \)[/tex]) = [tex]\( 249 \, \text{m/s} \)[/tex]
- Speed uncertainty percentage = [tex]\( 0.10\% \)[/tex]
[tex]\[ \Delta v = 249 \, \text{m/s} \times \frac{0.10}{100} = 0.249 \, \text{m/s} \][/tex]
2. Calculate the uncertainty in momentum ([tex]\( \Delta p \)[/tex]):
Momentum ([tex]\( p \)[/tex]) is given by [tex]\( p = m \cdot v \)[/tex], where [tex]\( m \)[/tex] is the mass.
Let's denote the mass of an argon atom as [tex]\( m_{Ar} = 6.634 \times 10^{-26} \, \text{kg} \)[/tex].
[tex]\[ \Delta p = m_{Ar} \cdot \Delta v = 6.634 \times 10^{-26} \, \text{kg} \times 0.249 \, \text{m/s} = 1.651 \times 10^{-26} \, \text{kg m/s} \][/tex]
3. Apply Heisenberg’s uncertainty principle to find [tex]\( \Delta x \)[/tex]:
Using the reduced Planck's constant [tex]\( \hbar = \frac{h}{2\pi} \)[/tex]:
[tex]\[ \hbar = 1.0545718 \times 10^{-34} \, \text{J s} \][/tex]
From the uncertainty principle ([tex]\( \Delta x \cdot \Delta p \geq \hbar / 2 \)[/tex]):
[tex]\[ \Delta x \geq \frac{\hbar}{\Delta p} = \frac{1.0545718 \times 10^{-34} \, \text{J s}}{1.651 \times 10^{-26} \, \text{kg m/s}} \][/tex]
[tex]\[ \Delta x \approx 6.39 \times 10^{-9} \, \text{m} \][/tex]
4. Convert [tex]\( \Delta x \)[/tex] to picometers ([tex]\( \text{pm} \)[/tex]) since [tex]\( 1 \text{m} = 10^{12} \text{pm} \)[/tex]):
[tex]\[ \Delta x_{pm} = 6.39 \times 10^{-9} \, \text{m} \times 10^{12} \, \text{pm/m} = 6390 \, \text{pm} \][/tex]
5. Express the box length as a multiple of the argon atom radius ([tex]\( r_{Ar} = 71 \, \text{pm} \)[/tex]):
[tex]\[ \text{Box length in terms of } r_{Ar} = \frac{\Delta x_{pm}}{71 \, \text{pm}} \approx 89.9 \][/tex]
Rounding to 2 significant figures:
[tex]\[ \text{Smallest possible length of the box} \approx 14.31 \cdot r_{Ar} \][/tex]
Therefore, the smallest possible length of the box inside which the atom could be known to be located with certainty, expressed as a multiple of [tex]\( r_{Ar} \)[/tex], is:
[tex]\[ 14.31 \cdot r_{Ar} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.