Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
To determine why [tex]\(\sin 30^\circ \sin 60^\circ + \cos 30^\circ \cos 60^\circ = 2(\sin 30^\circ \sin 60^\circ) = 2(\cos 30^\circ \cos 60^\circ)\)[/tex] is true, let's break down the trigonometric identities and relationships involved.
First, recall the exact values of the sines and cosines for the given angles:
- [tex]\(\sin 30^\circ = \frac{1}{2}\)[/tex]
- [tex]\(\cos 30^\circ = \frac{\sqrt{3}}{2}\)[/tex]
- [tex]\(\sin 60^\circ = \frac{\sqrt{3}}{2}\)[/tex]
- [tex]\(\cos 60^\circ = \frac{1}{2}\)[/tex]
Now, let's evaluate the left-hand side (LHS) and the right-hand side (RHS) of the given equation separately.
### Evaluating the LHS
[tex]\[ \text{LHS} = \sin 30^\circ \sin 60^\circ + \cos 30^\circ \cos 60^\circ \][/tex]
Substitute the known values:
[tex]\[ \text{LHS} = \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) \][/tex]
[tex]\[ \text{LHS} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} \][/tex]
[tex]\[ \text{LHS} = \frac{2\sqrt{3}}{4} \][/tex]
[tex]\[ \text{LHS} = \frac{\sqrt{3}}{2} \][/tex]
### Evaluating the RHS
[tex]\[ \text{RHS} = 2(\sin 30^\circ \sin 60^\circ) \][/tex]
Substitute the known values:
[tex]\[ \text{RHS} = 2 \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right) \][/tex]
[tex]\[ \text{RHS} = 2 \left(\frac{\sqrt{3}}{4}\right) \][/tex]
[tex]\[ \text{RHS} = \frac{2\sqrt{3}}{4} \][/tex]
[tex]\[ \text{RHS} = \frac{\sqrt{3}}{2} \][/tex]
Both LHS and RHS have the same value:
[tex]\[ \frac{\sqrt{3}}{2} \][/tex]
Therefore, [tex]\(\sin 30^\circ \sin 60^\circ + \cos 30^\circ \cos 60^\circ\)[/tex] is indeed equal to [tex]\(2(\sin 30^\circ \sin 60^\circ)\)[/tex] which simplifies to [tex]\(2(\cos 30^\circ \cos 60^\circ)\)[/tex].
The correct reasoning for why this identity holds can be inferred from:
b. The sine of an angle is equal to the cosine of its complement.
In the case of the angles 30° and 60°, these angles are complements of each other (since 30° + 60° = 90°). The identity used in the problem is a specific instance of the angle sum identity for cosine, i.e., [tex]\(\cos (a - b) = \cos a \cos b + \sin a \sin b\)[/tex], where [tex]\(a = 60^\circ\)[/tex] and [tex]\(b = 30^\circ\)[/tex], hence [tex]\(\cos (60^\circ - 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}\)[/tex].
Thus, option b is the most appropriate reason.
First, recall the exact values of the sines and cosines for the given angles:
- [tex]\(\sin 30^\circ = \frac{1}{2}\)[/tex]
- [tex]\(\cos 30^\circ = \frac{\sqrt{3}}{2}\)[/tex]
- [tex]\(\sin 60^\circ = \frac{\sqrt{3}}{2}\)[/tex]
- [tex]\(\cos 60^\circ = \frac{1}{2}\)[/tex]
Now, let's evaluate the left-hand side (LHS) and the right-hand side (RHS) of the given equation separately.
### Evaluating the LHS
[tex]\[ \text{LHS} = \sin 30^\circ \sin 60^\circ + \cos 30^\circ \cos 60^\circ \][/tex]
Substitute the known values:
[tex]\[ \text{LHS} = \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) \][/tex]
[tex]\[ \text{LHS} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} \][/tex]
[tex]\[ \text{LHS} = \frac{2\sqrt{3}}{4} \][/tex]
[tex]\[ \text{LHS} = \frac{\sqrt{3}}{2} \][/tex]
### Evaluating the RHS
[tex]\[ \text{RHS} = 2(\sin 30^\circ \sin 60^\circ) \][/tex]
Substitute the known values:
[tex]\[ \text{RHS} = 2 \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right) \][/tex]
[tex]\[ \text{RHS} = 2 \left(\frac{\sqrt{3}}{4}\right) \][/tex]
[tex]\[ \text{RHS} = \frac{2\sqrt{3}}{4} \][/tex]
[tex]\[ \text{RHS} = \frac{\sqrt{3}}{2} \][/tex]
Both LHS and RHS have the same value:
[tex]\[ \frac{\sqrt{3}}{2} \][/tex]
Therefore, [tex]\(\sin 30^\circ \sin 60^\circ + \cos 30^\circ \cos 60^\circ\)[/tex] is indeed equal to [tex]\(2(\sin 30^\circ \sin 60^\circ)\)[/tex] which simplifies to [tex]\(2(\cos 30^\circ \cos 60^\circ)\)[/tex].
The correct reasoning for why this identity holds can be inferred from:
b. The sine of an angle is equal to the cosine of its complement.
In the case of the angles 30° and 60°, these angles are complements of each other (since 30° + 60° = 90°). The identity used in the problem is a specific instance of the angle sum identity for cosine, i.e., [tex]\(\cos (a - b) = \cos a \cos b + \sin a \sin b\)[/tex], where [tex]\(a = 60^\circ\)[/tex] and [tex]\(b = 30^\circ\)[/tex], hence [tex]\(\cos (60^\circ - 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}\)[/tex].
Thus, option b is the most appropriate reason.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.