IDNLearn.com: Where your questions meet expert advice and community support. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
Sure, let's break down the solution step-by-step.
Given:
- Mass of solute (polymer) = 2.50 g
- Volume of the solution = 150 mL
- Osmotic pressure (Π) = 1.25 × 10^-2 atm
- Temperature = 25°C
We aim to find the molar mass of the polymer.
Step 1: Convert the volume from mL to L
[tex]\[ V = \frac{150 \text{ mL}}{1000} = 0.15 \text{ L} \][/tex]
Step 2: Convert the temperature from Celsius to Kelvin
[tex]\[ T = 25^\circ C + 273.15 = 298.15 \text{ K} \][/tex]
Step 3: Use the osmotic pressure formula to find the molar concentration (C of the solute)
[tex]\[ \Pi = CRT \][/tex]
Where:
- Π = osmotic pressure
- R = ideal gas constant = 0.0821 L·atm/(K·mol)
- T = temperature in Kelvin
Rearrange the formula to solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{\Pi}{RT} \][/tex]
Substitute the given values:
[tex]\[ C = \frac{1.25 \times 10^{-2} \text{ atm}}{0.0821 \text{ L·atm/(K·mol)} \times 298.15 \text{ K}} \][/tex]
[tex]\[ C \approx 0.000510660237 \text{ mol/L} \][/tex]
Step 4: Calculate the moles of solute in the solution
[tex]\[ \text{Moles of solute} = C \times V \][/tex]
[tex]\[ \text{Moles of solute} = 0.000510660237 \text{ mol/L} \times 0.15 \text{ L} \][/tex]
[tex]\[ \text{Moles of solute} \approx 7.659903551 \times 10^{-5} \text{ mol} \][/tex]
Step 5: Calculate the molar mass (M) of the polymer
[tex]\[ \text{Molar Mass} = \frac{\text{Mass of solute}}{\text{Moles of solute}} \][/tex]
[tex]\[ \text{Molar Mass} = \frac{2.50 \text{ g}}{7.659903551 \times 10^{-5} \text{ mol}} \][/tex]
[tex]\[ \text{Molar Mass} \approx 32637.487 \text{ g/mol} \][/tex]
Thus, the molar mass of the polymer is approximately 32,637.487 g/mol.
Given:
- Mass of solute (polymer) = 2.50 g
- Volume of the solution = 150 mL
- Osmotic pressure (Π) = 1.25 × 10^-2 atm
- Temperature = 25°C
We aim to find the molar mass of the polymer.
Step 1: Convert the volume from mL to L
[tex]\[ V = \frac{150 \text{ mL}}{1000} = 0.15 \text{ L} \][/tex]
Step 2: Convert the temperature from Celsius to Kelvin
[tex]\[ T = 25^\circ C + 273.15 = 298.15 \text{ K} \][/tex]
Step 3: Use the osmotic pressure formula to find the molar concentration (C of the solute)
[tex]\[ \Pi = CRT \][/tex]
Where:
- Π = osmotic pressure
- R = ideal gas constant = 0.0821 L·atm/(K·mol)
- T = temperature in Kelvin
Rearrange the formula to solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{\Pi}{RT} \][/tex]
Substitute the given values:
[tex]\[ C = \frac{1.25 \times 10^{-2} \text{ atm}}{0.0821 \text{ L·atm/(K·mol)} \times 298.15 \text{ K}} \][/tex]
[tex]\[ C \approx 0.000510660237 \text{ mol/L} \][/tex]
Step 4: Calculate the moles of solute in the solution
[tex]\[ \text{Moles of solute} = C \times V \][/tex]
[tex]\[ \text{Moles of solute} = 0.000510660237 \text{ mol/L} \times 0.15 \text{ L} \][/tex]
[tex]\[ \text{Moles of solute} \approx 7.659903551 \times 10^{-5} \text{ mol} \][/tex]
Step 5: Calculate the molar mass (M) of the polymer
[tex]\[ \text{Molar Mass} = \frac{\text{Mass of solute}}{\text{Moles of solute}} \][/tex]
[tex]\[ \text{Molar Mass} = \frac{2.50 \text{ g}}{7.659903551 \times 10^{-5} \text{ mol}} \][/tex]
[tex]\[ \text{Molar Mass} \approx 32637.487 \text{ g/mol} \][/tex]
Thus, the molar mass of the polymer is approximately 32,637.487 g/mol.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.