Find trusted answers to your questions with the help of IDNLearn.com's knowledgeable community. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Let [tex]$f(x)=8x^2-3x^3-2x^4-6$[/tex]. Find the following:

Degree of [tex]f(x) = 4[/tex] [tex]$\square$[/tex]

Leading coefficient [tex]$=$[/tex] [tex]$\square$[/tex] [tex]$-2$[/tex]

End behavior: (Note: type "infty" for [tex]$\infty$[/tex] and "-infty" for [tex]$-\infty$[/tex])

As [tex]$x \rightarrow -\infty, f(x) \rightarrow$[/tex] [tex]$\square$[/tex]

As [tex]$x \rightarrow \infty, f(x) \rightarrow -\infty$[/tex] [tex]$\square$[/tex]

Maximum number of intercepts: [tex]$\square$[/tex]

Maximum number of turning points: [tex]$\square$[/tex] 6


Sagot :

Let's analyze the polynomial function [tex]\( f(x) = 8x^2 - 3x^3 - 2x^4 - 6 \)[/tex].

### Degree of [tex]\( f(x) \)[/tex]:
The degree of a polynomial is the highest power of [tex]\( x \)[/tex] in the expression. In [tex]\( f(x) = 8x^2 - 3x^3 - 2x^4 - 6 \)[/tex], the term with the highest power of [tex]\( x \)[/tex] is [tex]\( -2x^4 \)[/tex]. Therefore, the degree of [tex]\( f(x) \)[/tex] is:
[tex]\[\boxed{4}\][/tex]

### Leading Coefficient:
The leading coefficient is the coefficient of the term with the highest power of [tex]\( x \)[/tex]. In this polynomial, that term is [tex]\( -2x^4 \)[/tex]. The leading coefficient is:
[tex]\[\boxed{-2}\][/tex]

### End Behavior:
To determine the end behavior, we analyze the term with the highest degree, [tex]\( -2x^4 \)[/tex].

- As [tex]\( x \rightarrow -\infty \)[/tex]:
The leading term [tex]\( -2x^4 \)[/tex] dominates the function. Since [tex]\( x^4 \)[/tex] is always positive and multiplied by [tex]\(-2\)[/tex], it will go to [tex]\(-\infty\)[/tex] as [tex]\( x \rightarrow -\infty \)[/tex]. Thus,
[tex]\[ \boxed{-\infty} \][/tex]

- As [tex]\( x \rightarrow \infty \)[/tex]:
Similarly, the leading term [tex]\( -2x^4 \)[/tex] dominates the function. [tex]\( x^4 \)[/tex] is still positive and multiplied by [tex]\(-2\)[/tex], causing the function to go to [tex]\(-\infty\)[/tex] as [tex]\( x \rightarrow \infty \)[/tex]. Thus,
[tex]\[ \boxed{-\infty} \][/tex]

### Maximum Number of Intercepts:
A polynomial function of degree [tex]\( n \)[/tex] can have at most [tex]\( n \)[/tex] intercepts. Since the degree of [tex]\( f(x) \)[/tex] is 4, the maximum number of intercepts is:
[tex]\[\boxed{4}\][/tex]

### Maximum Number of Turning Points:
A polynomial function of degree [tex]\( n \)[/tex] can have at most [tex]\( n-1 \)[/tex] turning points. For [tex]\( f(x) \)[/tex], the degree is 4. Therefore, it can have at most [tex]\( 4-1 = 3 \)[/tex] turning points:
[tex]\[\boxed{3}\][/tex]

To summarize, the detailed analysis gives us:

- Degree of [tex]\( f(x) \)[/tex]: [tex]\( \boxed{4} \)[/tex]
- Leading coefficient: [tex]\( \boxed{-2} \)[/tex]
- End behavior:
- As [tex]\( x \rightarrow -\infty, f(x) \rightarrow \boxed{-\infty} \)[/tex]
- As [tex]\( x \rightarrow \infty, f(x) \rightarrow \boxed{-\infty} \)[/tex]
- Maximum number of intercepts: [tex]\( \boxed{4} \)[/tex]
- Maximum number of turning points: [tex]\( \boxed{3} \)[/tex]