IDNLearn.com connects you with a community of experts ready to answer your questions. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To determine the pH of a 0.320 M solution of calcium nitrite, [tex]\( \text{Ca(NO}_2\text{)}_2 \)[/tex], with a given [tex]\( K_a \)[/tex] for nitrous acid ([tex]\( \text{HNO}_2 \)[/tex]) of [tex]\( 4.5 \times 10^{-4} \)[/tex]:
### Step-by-Step Solution:
1. Write the Dissociation Reaction:
Calcium nitrite dissociates completely in water:
[tex]\[ \text{Ca(NO}_2\text{)}_2 \rightarrow \text{Ca}^{2+} + 2\text{NO}_2^- \][/tex]
2. Determine the Concentration of [tex]\( \text{NO}_2^- \)[/tex]:
Since each formula unit of [tex]\( \text{Ca(NO}_2\text{)}_2 \)[/tex] produces two nitrite ions ([tex]\( \text{NO}_2^- \)[/tex]):
[tex]\[ \text{Concentration of } \text{NO}_2^- = 2 \times 0.320\, \text{M} = 0.640\, \text{M} \][/tex]
3. Set Up the Equilibrium:
Nitrite ions ([tex]\( \text{NO}_2^- \)[/tex]) can react with water to form nitrous acid ([tex]\( \text{HNO}_2 \)[/tex]) and hydroxide ions ([tex]\( \text{OH}^- \)[/tex]). However, an easier approach is to determine the hydrogen ion concentration ([tex]\( \text{H}^+ \)[/tex]) using the [tex]\( K_a \)[/tex] value of nitrous acid ([tex]\( \text{HNO}_2 \)[/tex]) and the concentration of [tex]\(\text{NO}_2^- \)[/tex].
The dissociation of [tex]\( \text{HNO}_2 \)[/tex] is:
[tex]\[ \text{HNO}_2 \leftrightarrow \text{H}^+ + \text{NO}_2^- \][/tex]
The equilibrium expression for [tex]\( K_a \)[/tex] is:
[tex]\[ K_a = \frac{[\text{H}^+][\text{NO}_2^-]}{[\text{HNO}_2]} \][/tex]
4. Assumption for Simplification:
Assuming the reaction [tex]\( \text{NO}_2^- \leftrightarrow \text{HNO}_2 + \text{OH}^- \)[/tex] reaches an equilibrium where [tex]\( [\text{H}^+] \approx [\text{OH}^-] \)[/tex].
5. Calculate Hydrogen Ion Concentration:
To find [tex]\( \text{H}^+ \)[/tex] ions, we assume that at equilibrium, [tex]\( [\text{H}^+] \)[/tex] from the dissociation is in square root relation of the product of [tex]\( K_a \)[/tex] and the nitrite ion concentration:
[tex]\[ [\text{H}^+] = \sqrt{K_a \times [\text{NO}_2^-]} = \sqrt{4.5 \times 10^{-4} \times 0.640} \approx 0.01697056 \, \text{M} \][/tex]
6. Calculate the pH:
The pH is calculated using the formula:
[tex]\[ \text{pH} = -\log [\text{H}^+] \][/tex]
Substituting the concentration of [tex]\( \text{H}^+ \)[/tex]:
[tex]\[ \text{pH} = -\log (0.01697056) \approx 1.77 \][/tex]
### Conclusion:
Thus, the pH of a 0.320 M solution of [tex]\( \text{Ca(NO}_2\text{)}_2 \)[/tex] is approximately 1.77.
### Step-by-Step Solution:
1. Write the Dissociation Reaction:
Calcium nitrite dissociates completely in water:
[tex]\[ \text{Ca(NO}_2\text{)}_2 \rightarrow \text{Ca}^{2+} + 2\text{NO}_2^- \][/tex]
2. Determine the Concentration of [tex]\( \text{NO}_2^- \)[/tex]:
Since each formula unit of [tex]\( \text{Ca(NO}_2\text{)}_2 \)[/tex] produces two nitrite ions ([tex]\( \text{NO}_2^- \)[/tex]):
[tex]\[ \text{Concentration of } \text{NO}_2^- = 2 \times 0.320\, \text{M} = 0.640\, \text{M} \][/tex]
3. Set Up the Equilibrium:
Nitrite ions ([tex]\( \text{NO}_2^- \)[/tex]) can react with water to form nitrous acid ([tex]\( \text{HNO}_2 \)[/tex]) and hydroxide ions ([tex]\( \text{OH}^- \)[/tex]). However, an easier approach is to determine the hydrogen ion concentration ([tex]\( \text{H}^+ \)[/tex]) using the [tex]\( K_a \)[/tex] value of nitrous acid ([tex]\( \text{HNO}_2 \)[/tex]) and the concentration of [tex]\(\text{NO}_2^- \)[/tex].
The dissociation of [tex]\( \text{HNO}_2 \)[/tex] is:
[tex]\[ \text{HNO}_2 \leftrightarrow \text{H}^+ + \text{NO}_2^- \][/tex]
The equilibrium expression for [tex]\( K_a \)[/tex] is:
[tex]\[ K_a = \frac{[\text{H}^+][\text{NO}_2^-]}{[\text{HNO}_2]} \][/tex]
4. Assumption for Simplification:
Assuming the reaction [tex]\( \text{NO}_2^- \leftrightarrow \text{HNO}_2 + \text{OH}^- \)[/tex] reaches an equilibrium where [tex]\( [\text{H}^+] \approx [\text{OH}^-] \)[/tex].
5. Calculate Hydrogen Ion Concentration:
To find [tex]\( \text{H}^+ \)[/tex] ions, we assume that at equilibrium, [tex]\( [\text{H}^+] \)[/tex] from the dissociation is in square root relation of the product of [tex]\( K_a \)[/tex] and the nitrite ion concentration:
[tex]\[ [\text{H}^+] = \sqrt{K_a \times [\text{NO}_2^-]} = \sqrt{4.5 \times 10^{-4} \times 0.640} \approx 0.01697056 \, \text{M} \][/tex]
6. Calculate the pH:
The pH is calculated using the formula:
[tex]\[ \text{pH} = -\log [\text{H}^+] \][/tex]
Substituting the concentration of [tex]\( \text{H}^+ \)[/tex]:
[tex]\[ \text{pH} = -\log (0.01697056) \approx 1.77 \][/tex]
### Conclusion:
Thus, the pH of a 0.320 M solution of [tex]\( \text{Ca(NO}_2\text{)}_2 \)[/tex] is approximately 1.77.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.