Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
To differentiate [tex]\( y = x^2 \)[/tex] from first principles, we follow the process of using the difference quotient for the derivative. The difference quotient is defined as:
[tex]\[ \frac{y(x + h) - y(x)}{h} \][/tex]
where [tex]\( h \)[/tex] is a small increment.
Here are the detailed steps:
1. Define the function [tex]\( y = x^2 \)[/tex]:
The function is [tex]\( y = x^2 \)[/tex].
2. Substitute [tex]\( x + h \)[/tex] into the function:
Find [tex]\( y(x + h) \)[/tex]:
[tex]\[ y(x + h) = (x + h)^2 = x^2 + 2xh + h^2 \][/tex]
3. Set up the difference quotient:
The difference quotient is:
[tex]\[ \frac{y(x + h) - y(x)}{h} = \frac{(x^2 + 2xh + h^2) - x^2}{h} \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} \][/tex]
4. Simplify the expression:
Factor out [tex]\( h \)[/tex] from the numerator:
[tex]\[ \frac{h(2x + h)}{h} \][/tex]
Cancel [tex]\( h \)[/tex]:
[tex]\[ 2x + h \][/tex]
5. Take the limit as [tex]\( h \)[/tex] approaches 0:
To find the derivative, we take the limit of the simplified difference quotient as [tex]\( h \)[/tex] approaches 0:
[tex]\[ \lim_{h \to 0} (2x + h) = 2x \][/tex]
Therefore, the derivative of [tex]\( y = x^2 \)[/tex] from first principles is:
[tex]\[ \boxed{2x} \][/tex]
However, given the numerical approximation, if we consider a very small value for [tex]\( h \)[/tex] such as [tex]\( h = 1 \times 10^{-5} \)[/tex]:
1. First, calculate the difference quotient using [tex]\( h = 1 \times 10^{-5} \)[/tex]:
[tex]\[ \frac{(x + 1 \times 10^{-5})^2 - x^2}{1 \times 10^{-5}} \][/tex]
2. Expand [tex]\((x + 1 \times 10^{-5})^2\)[/tex]:
[tex]\[ = x^2 + 2x \times 1 \times 10^{-5} + (1 \times 10^{-5})^2 \][/tex]
Therefore:
[tex]\[ y(x + h) = x^2 + 2x \times 10^{-5} + 1 \times 10^{-10} \][/tex]
3. Plug this into the difference quotient:
[tex]\[ \frac{x^2 + 2x \times 10^{-5} + 1 \times 10^{-10} - x^2}{1 \times 10^{-5}} \][/tex]
4. Simplify the numerator:
[tex]\[ \frac{2x \times 10^{-5} + 1 \times 10^{-10}}{1 \times 10^{-5}} \][/tex]
Divide each term by [tex]\( 1 \times 10^{-5} \)[/tex]:
[tex]\[ 2x + 1 \times 10^{-10} / 1 \times 10^{-5} = 2x + 1 \times 10^{-5} \][/tex]
Therefore, the numerical result is:
[tex]\[ 2x + 1 \times 10^{-5} \][/tex]
Thus, the derivative is:
[tex]\[ \boxed{2x + 1 \times 10^{-5}}. \][/tex]
The expression [tex]\( -100000.0 \cdot x^2 + 100000.0 \cdot (x + 1.0e-5)^2 \)[/tex] represents the unsimplified form of the difference quotient. The simplified form, after dividing by [tex]\( h \)[/tex] and taking the limit, gives us [tex]\( 2x + 1.0e-5 \)[/tex].
[tex]\[ \frac{y(x + h) - y(x)}{h} \][/tex]
where [tex]\( h \)[/tex] is a small increment.
Here are the detailed steps:
1. Define the function [tex]\( y = x^2 \)[/tex]:
The function is [tex]\( y = x^2 \)[/tex].
2. Substitute [tex]\( x + h \)[/tex] into the function:
Find [tex]\( y(x + h) \)[/tex]:
[tex]\[ y(x + h) = (x + h)^2 = x^2 + 2xh + h^2 \][/tex]
3. Set up the difference quotient:
The difference quotient is:
[tex]\[ \frac{y(x + h) - y(x)}{h} = \frac{(x^2 + 2xh + h^2) - x^2}{h} \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 + 2xh + h^2 - x^2}{h} = \frac{2xh + h^2}{h} \][/tex]
4. Simplify the expression:
Factor out [tex]\( h \)[/tex] from the numerator:
[tex]\[ \frac{h(2x + h)}{h} \][/tex]
Cancel [tex]\( h \)[/tex]:
[tex]\[ 2x + h \][/tex]
5. Take the limit as [tex]\( h \)[/tex] approaches 0:
To find the derivative, we take the limit of the simplified difference quotient as [tex]\( h \)[/tex] approaches 0:
[tex]\[ \lim_{h \to 0} (2x + h) = 2x \][/tex]
Therefore, the derivative of [tex]\( y = x^2 \)[/tex] from first principles is:
[tex]\[ \boxed{2x} \][/tex]
However, given the numerical approximation, if we consider a very small value for [tex]\( h \)[/tex] such as [tex]\( h = 1 \times 10^{-5} \)[/tex]:
1. First, calculate the difference quotient using [tex]\( h = 1 \times 10^{-5} \)[/tex]:
[tex]\[ \frac{(x + 1 \times 10^{-5})^2 - x^2}{1 \times 10^{-5}} \][/tex]
2. Expand [tex]\((x + 1 \times 10^{-5})^2\)[/tex]:
[tex]\[ = x^2 + 2x \times 1 \times 10^{-5} + (1 \times 10^{-5})^2 \][/tex]
Therefore:
[tex]\[ y(x + h) = x^2 + 2x \times 10^{-5} + 1 \times 10^{-10} \][/tex]
3. Plug this into the difference quotient:
[tex]\[ \frac{x^2 + 2x \times 10^{-5} + 1 \times 10^{-10} - x^2}{1 \times 10^{-5}} \][/tex]
4. Simplify the numerator:
[tex]\[ \frac{2x \times 10^{-5} + 1 \times 10^{-10}}{1 \times 10^{-5}} \][/tex]
Divide each term by [tex]\( 1 \times 10^{-5} \)[/tex]:
[tex]\[ 2x + 1 \times 10^{-10} / 1 \times 10^{-5} = 2x + 1 \times 10^{-5} \][/tex]
Therefore, the numerical result is:
[tex]\[ 2x + 1 \times 10^{-5} \][/tex]
Thus, the derivative is:
[tex]\[ \boxed{2x + 1 \times 10^{-5}}. \][/tex]
The expression [tex]\( -100000.0 \cdot x^2 + 100000.0 \cdot (x + 1.0e-5)^2 \)[/tex] represents the unsimplified form of the difference quotient. The simplified form, after dividing by [tex]\( h \)[/tex] and taking the limit, gives us [tex]\( 2x + 1.0e-5 \)[/tex].
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.