Uncover valuable information and solutions with IDNLearn.com's extensive Q&A platform. Our experts are ready to provide prompt and detailed answers to any questions you may have.

Find the following limits:

i. [tex] \lim_{x \rightarrow -\infty} \left(2 + \frac{1}{x}\right)^3 [/tex]

ii. [tex] \lim_{n \rightarrow \infty} \left(x^4 - 7x^2 + 3x - 5\right) [/tex]

iii. [tex] \lim_{x \rightarrow 2} \left( \frac{4 - x^2}{3 - \sqrt{x^2 + 5}} \right) [/tex]


Sagot :

Sure! Let's go through each limit step-by-step.

### i. [tex]\(\lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3\)[/tex]

1. As [tex]\(x \rightarrow -\infty\)[/tex], the term [tex]\(\frac{1}{x}\)[/tex] approaches 0 because [tex]\(\frac{1}{x}\)[/tex] gets smaller and smaller.
2. Therefore, [tex]\(2 + \frac{1}{x}\)[/tex] approaches 2 since the [tex]\(\frac{1}{x}\)[/tex] term becomes negligible.
3. Raising this result to the power of 3, we get:
[tex]\[ \left(2 + \frac{1}{x}\right)^3 \to 2^3 = 8 \][/tex]
4. Thus,
[tex]\[ \lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3 = 8 \][/tex]

### ii. [tex]\(\lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right)\)[/tex]

1. This expression is a polynomial in [tex]\(x\)[/tex] and not dependent on [tex]\(n\)[/tex].
2. Therefore, the limit of this expression as [tex]\(n \rightarrow \infty\)[/tex] is just the expression itself, since it does not change with [tex]\(n\)[/tex]:
[tex]\[ \lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right) = x^4 - 7x^2 + 3x - 5 \][/tex]

### iii. [tex]\(\lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right)\)[/tex]

1. First, substitute [tex]\(x = 2\)[/tex] directly into the function where possible:
[tex]\[ 4 - x^2 \text{ at } x = 2 \rightarrow 4 - 2^2 = 4 - 4 = 0 \][/tex]
[tex]\[ \sqrt{x^2 + 5} \text{ at } x = 2 \rightarrow \sqrt{2^2 + 5} = \sqrt{4 + 5} = \sqrt{9} = 3 \][/tex]
2. Thus, the expression becomes:
[tex]\[ \frac{4 - 2^2}{3 - \sqrt{2^2 + 5}} = \frac{0}{3 - 3} = \frac{0}{0} \][/tex]
This is an indeterminate form, so we need another approach.

3. To properly resolve the limit, we can apply L'Hôpital's Rule which states that if we have an indeterminate form of [tex]\(\frac{0}{0}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]\[ \text{Numerator: } \frac{d}{dx} (4 - x^2) = -2x \][/tex]
[tex]\[ \text{Denominator: } \frac{d}{dx} (3 - \sqrt{x^2 + 5}) = -\frac{x}{\sqrt{x^2 + 5}} \][/tex]
Applying L'Hôpital's Rule:
[tex]\[ \lim_{{x \to 2}} \frac{-2x}{-\frac{x}{\sqrt{x^2 + 5}}} = \lim_{{x \to 2}} \frac{-2x \cdot \sqrt{x^2 + 5}}{-x} \][/tex]
4. Simplify:
[tex]\[ \lim_{{x \to 2}} \frac{2x \cdot \sqrt{x^2 + 5}}{x} = \lim_{{x \to 2}} 2 \sqrt{x^2 + 5} \][/tex]
Substitute [tex]\(x = 2\)[/tex] back in:
[tex]\[ 2 \sqrt{2^2 + 5} = 2 \sqrt{4 + 5} = 2 \cdot 3 = 6 \][/tex]
5. Therefore,
[tex]\[ \lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right) = 6 \][/tex]

We have successfully evaluated all the given limits:

1. [tex]\(\lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3 = 8\)[/tex]
2. [tex]\(\lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right) = x^4 - 7x^2 + 3x - 5\)[/tex]
3. [tex]\(\lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right) = 6\)[/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.