IDNLearn.com makes it easy to find accurate answers to your specific questions. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Sure! Let's go through each limit step-by-step.
### i. [tex]\(\lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3\)[/tex]
1. As [tex]\(x \rightarrow -\infty\)[/tex], the term [tex]\(\frac{1}{x}\)[/tex] approaches 0 because [tex]\(\frac{1}{x}\)[/tex] gets smaller and smaller.
2. Therefore, [tex]\(2 + \frac{1}{x}\)[/tex] approaches 2 since the [tex]\(\frac{1}{x}\)[/tex] term becomes negligible.
3. Raising this result to the power of 3, we get:
[tex]\[ \left(2 + \frac{1}{x}\right)^3 \to 2^3 = 8 \][/tex]
4. Thus,
[tex]\[ \lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3 = 8 \][/tex]
### ii. [tex]\(\lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right)\)[/tex]
1. This expression is a polynomial in [tex]\(x\)[/tex] and not dependent on [tex]\(n\)[/tex].
2. Therefore, the limit of this expression as [tex]\(n \rightarrow \infty\)[/tex] is just the expression itself, since it does not change with [tex]\(n\)[/tex]:
[tex]\[ \lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right) = x^4 - 7x^2 + 3x - 5 \][/tex]
### iii. [tex]\(\lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right)\)[/tex]
1. First, substitute [tex]\(x = 2\)[/tex] directly into the function where possible:
[tex]\[ 4 - x^2 \text{ at } x = 2 \rightarrow 4 - 2^2 = 4 - 4 = 0 \][/tex]
[tex]\[ \sqrt{x^2 + 5} \text{ at } x = 2 \rightarrow \sqrt{2^2 + 5} = \sqrt{4 + 5} = \sqrt{9} = 3 \][/tex]
2. Thus, the expression becomes:
[tex]\[ \frac{4 - 2^2}{3 - \sqrt{2^2 + 5}} = \frac{0}{3 - 3} = \frac{0}{0} \][/tex]
This is an indeterminate form, so we need another approach.
3. To properly resolve the limit, we can apply L'Hôpital's Rule which states that if we have an indeterminate form of [tex]\(\frac{0}{0}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]\[ \text{Numerator: } \frac{d}{dx} (4 - x^2) = -2x \][/tex]
[tex]\[ \text{Denominator: } \frac{d}{dx} (3 - \sqrt{x^2 + 5}) = -\frac{x}{\sqrt{x^2 + 5}} \][/tex]
Applying L'Hôpital's Rule:
[tex]\[ \lim_{{x \to 2}} \frac{-2x}{-\frac{x}{\sqrt{x^2 + 5}}} = \lim_{{x \to 2}} \frac{-2x \cdot \sqrt{x^2 + 5}}{-x} \][/tex]
4. Simplify:
[tex]\[ \lim_{{x \to 2}} \frac{2x \cdot \sqrt{x^2 + 5}}{x} = \lim_{{x \to 2}} 2 \sqrt{x^2 + 5} \][/tex]
Substitute [tex]\(x = 2\)[/tex] back in:
[tex]\[ 2 \sqrt{2^2 + 5} = 2 \sqrt{4 + 5} = 2 \cdot 3 = 6 \][/tex]
5. Therefore,
[tex]\[ \lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right) = 6 \][/tex]
We have successfully evaluated all the given limits:
1. [tex]\(\lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3 = 8\)[/tex]
2. [tex]\(\lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right) = x^4 - 7x^2 + 3x - 5\)[/tex]
3. [tex]\(\lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right) = 6\)[/tex]
### i. [tex]\(\lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3\)[/tex]
1. As [tex]\(x \rightarrow -\infty\)[/tex], the term [tex]\(\frac{1}{x}\)[/tex] approaches 0 because [tex]\(\frac{1}{x}\)[/tex] gets smaller and smaller.
2. Therefore, [tex]\(2 + \frac{1}{x}\)[/tex] approaches 2 since the [tex]\(\frac{1}{x}\)[/tex] term becomes negligible.
3. Raising this result to the power of 3, we get:
[tex]\[ \left(2 + \frac{1}{x}\right)^3 \to 2^3 = 8 \][/tex]
4. Thus,
[tex]\[ \lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3 = 8 \][/tex]
### ii. [tex]\(\lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right)\)[/tex]
1. This expression is a polynomial in [tex]\(x\)[/tex] and not dependent on [tex]\(n\)[/tex].
2. Therefore, the limit of this expression as [tex]\(n \rightarrow \infty\)[/tex] is just the expression itself, since it does not change with [tex]\(n\)[/tex]:
[tex]\[ \lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right) = x^4 - 7x^2 + 3x - 5 \][/tex]
### iii. [tex]\(\lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right)\)[/tex]
1. First, substitute [tex]\(x = 2\)[/tex] directly into the function where possible:
[tex]\[ 4 - x^2 \text{ at } x = 2 \rightarrow 4 - 2^2 = 4 - 4 = 0 \][/tex]
[tex]\[ \sqrt{x^2 + 5} \text{ at } x = 2 \rightarrow \sqrt{2^2 + 5} = \sqrt{4 + 5} = \sqrt{9} = 3 \][/tex]
2. Thus, the expression becomes:
[tex]\[ \frac{4 - 2^2}{3 - \sqrt{2^2 + 5}} = \frac{0}{3 - 3} = \frac{0}{0} \][/tex]
This is an indeterminate form, so we need another approach.
3. To properly resolve the limit, we can apply L'Hôpital's Rule which states that if we have an indeterminate form of [tex]\(\frac{0}{0}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]\[ \text{Numerator: } \frac{d}{dx} (4 - x^2) = -2x \][/tex]
[tex]\[ \text{Denominator: } \frac{d}{dx} (3 - \sqrt{x^2 + 5}) = -\frac{x}{\sqrt{x^2 + 5}} \][/tex]
Applying L'Hôpital's Rule:
[tex]\[ \lim_{{x \to 2}} \frac{-2x}{-\frac{x}{\sqrt{x^2 + 5}}} = \lim_{{x \to 2}} \frac{-2x \cdot \sqrt{x^2 + 5}}{-x} \][/tex]
4. Simplify:
[tex]\[ \lim_{{x \to 2}} \frac{2x \cdot \sqrt{x^2 + 5}}{x} = \lim_{{x \to 2}} 2 \sqrt{x^2 + 5} \][/tex]
Substitute [tex]\(x = 2\)[/tex] back in:
[tex]\[ 2 \sqrt{2^2 + 5} = 2 \sqrt{4 + 5} = 2 \cdot 3 = 6 \][/tex]
5. Therefore,
[tex]\[ \lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right) = 6 \][/tex]
We have successfully evaluated all the given limits:
1. [tex]\(\lim_{{x \to -\infty}} \left(2 + \frac{1}{x}\right)^3 = 8\)[/tex]
2. [tex]\(\lim_{{n \to \infty}} \left(x^4 - 7x^2 + 3x - 5\right) = x^4 - 7x^2 + 3x - 5\)[/tex]
3. [tex]\(\lim_{{x \to 2}} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}}\right) = 6\)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.