Get the most out of your questions with the extensive resources available on IDNLearn.com. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
Sure, let's solve the inequality [tex]\( \frac{x^2 - 1}{x^2 + 4x + 1} < 1 \)[/tex] step by step:
1. Rewrite the Inequality:
First, subtract 1 from both sides of the inequality to set it to 0.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - 1 < 0 \][/tex]
2. Combine the Fractions:
Express the inequality as a single fraction.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - \frac{x^2 + 4x + 1}{x^2 + 4x + 1} < 0 \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 - 1 - (x^2 + 4x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{x^2 - 1 - x^2 - 4x - 1}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{-4x - 2}{x^2 + 4x + 1} < 0 \][/tex]
3. Factor the Numerator and Denominator:
Note that the numerator [tex]\(-4x - 2\)[/tex] can be factored as:
[tex]\[ -2(2x + 1) \][/tex]
Therefore, our inequality is:
[tex]\[ \frac{-2(2x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
Now we need to find the intervals where this fraction is negative.
4. Determine Critical Points:
Critical points occur where the numerator or denominator are zero. Set the numerator [tex]\(-2(2x + 1)\)[/tex] to zero:
[tex]\[ -2(2x + 1) = 0 \quad \Rightarrow \quad 2x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2} \][/tex]
Set the denominator [tex]\(x^2 + 4x + 1\)[/tex] to zero. Find the roots using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{16 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{12}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 2\sqrt{3}}{2} \][/tex]
[tex]\[ x = -2 \pm \sqrt{3} \][/tex]
So, the roots are [tex]\( x = -2 - \sqrt{3} \)[/tex] and [tex]\( x = -2 + \sqrt{3} \)[/tex].
5. Test Intervals Between Critical Points:
Determine the sign of the fraction in the intervals defined by the critical points [tex]\( x = -2 - \sqrt{3} \)[/tex], [tex]\( x = -\frac{1}{2} \)[/tex], and [tex]\( x = -2 + \sqrt{3} \)[/tex].
- For [tex]\( x < -2 - \sqrt{3} \)[/tex]: Choose [tex]\( x = -4 \)[/tex]
- For [tex]\( -2 - \sqrt{3} < x < -\frac{1}{2} \)[/tex]: Choose [tex]\( x = -2 \)[/tex]
- For [tex]\( -\frac{1}{2} < x < -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 0 \)[/tex]
- For [tex]\( x > -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 2 \)[/tex]
Evaluate the sign of the fraction in these intervals. We find that the fraction is negative in the intervals
[tex]\[ (-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty) \][/tex]
6. Solution:
So, the solution to the inequality [tex]\( \frac{x^2 - 1}{x^2 + 4x + 1} < 1 \)[/tex] is
[tex]\[ \boxed{(-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty)} \][/tex]
1. Rewrite the Inequality:
First, subtract 1 from both sides of the inequality to set it to 0.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - 1 < 0 \][/tex]
2. Combine the Fractions:
Express the inequality as a single fraction.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - \frac{x^2 + 4x + 1}{x^2 + 4x + 1} < 0 \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 - 1 - (x^2 + 4x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{x^2 - 1 - x^2 - 4x - 1}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{-4x - 2}{x^2 + 4x + 1} < 0 \][/tex]
3. Factor the Numerator and Denominator:
Note that the numerator [tex]\(-4x - 2\)[/tex] can be factored as:
[tex]\[ -2(2x + 1) \][/tex]
Therefore, our inequality is:
[tex]\[ \frac{-2(2x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
Now we need to find the intervals where this fraction is negative.
4. Determine Critical Points:
Critical points occur where the numerator or denominator are zero. Set the numerator [tex]\(-2(2x + 1)\)[/tex] to zero:
[tex]\[ -2(2x + 1) = 0 \quad \Rightarrow \quad 2x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2} \][/tex]
Set the denominator [tex]\(x^2 + 4x + 1\)[/tex] to zero. Find the roots using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{16 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{12}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 2\sqrt{3}}{2} \][/tex]
[tex]\[ x = -2 \pm \sqrt{3} \][/tex]
So, the roots are [tex]\( x = -2 - \sqrt{3} \)[/tex] and [tex]\( x = -2 + \sqrt{3} \)[/tex].
5. Test Intervals Between Critical Points:
Determine the sign of the fraction in the intervals defined by the critical points [tex]\( x = -2 - \sqrt{3} \)[/tex], [tex]\( x = -\frac{1}{2} \)[/tex], and [tex]\( x = -2 + \sqrt{3} \)[/tex].
- For [tex]\( x < -2 - \sqrt{3} \)[/tex]: Choose [tex]\( x = -4 \)[/tex]
- For [tex]\( -2 - \sqrt{3} < x < -\frac{1}{2} \)[/tex]: Choose [tex]\( x = -2 \)[/tex]
- For [tex]\( -\frac{1}{2} < x < -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 0 \)[/tex]
- For [tex]\( x > -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 2 \)[/tex]
Evaluate the sign of the fraction in these intervals. We find that the fraction is negative in the intervals
[tex]\[ (-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty) \][/tex]
6. Solution:
So, the solution to the inequality [tex]\( \frac{x^2 - 1}{x^2 + 4x + 1} < 1 \)[/tex] is
[tex]\[ \boxed{(-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty)} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.