Experience the convenience of getting your questions answered at IDNLearn.com. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
Sure, let's solve the inequality [tex]\( \frac{x^2 - 1}{x^2 + 4x + 1} < 1 \)[/tex] step by step:
1. Rewrite the Inequality:
First, subtract 1 from both sides of the inequality to set it to 0.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - 1 < 0 \][/tex]
2. Combine the Fractions:
Express the inequality as a single fraction.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - \frac{x^2 + 4x + 1}{x^2 + 4x + 1} < 0 \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 - 1 - (x^2 + 4x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{x^2 - 1 - x^2 - 4x - 1}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{-4x - 2}{x^2 + 4x + 1} < 0 \][/tex]
3. Factor the Numerator and Denominator:
Note that the numerator [tex]\(-4x - 2\)[/tex] can be factored as:
[tex]\[ -2(2x + 1) \][/tex]
Therefore, our inequality is:
[tex]\[ \frac{-2(2x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
Now we need to find the intervals where this fraction is negative.
4. Determine Critical Points:
Critical points occur where the numerator or denominator are zero. Set the numerator [tex]\(-2(2x + 1)\)[/tex] to zero:
[tex]\[ -2(2x + 1) = 0 \quad \Rightarrow \quad 2x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2} \][/tex]
Set the denominator [tex]\(x^2 + 4x + 1\)[/tex] to zero. Find the roots using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{16 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{12}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 2\sqrt{3}}{2} \][/tex]
[tex]\[ x = -2 \pm \sqrt{3} \][/tex]
So, the roots are [tex]\( x = -2 - \sqrt{3} \)[/tex] and [tex]\( x = -2 + \sqrt{3} \)[/tex].
5. Test Intervals Between Critical Points:
Determine the sign of the fraction in the intervals defined by the critical points [tex]\( x = -2 - \sqrt{3} \)[/tex], [tex]\( x = -\frac{1}{2} \)[/tex], and [tex]\( x = -2 + \sqrt{3} \)[/tex].
- For [tex]\( x < -2 - \sqrt{3} \)[/tex]: Choose [tex]\( x = -4 \)[/tex]
- For [tex]\( -2 - \sqrt{3} < x < -\frac{1}{2} \)[/tex]: Choose [tex]\( x = -2 \)[/tex]
- For [tex]\( -\frac{1}{2} < x < -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 0 \)[/tex]
- For [tex]\( x > -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 2 \)[/tex]
Evaluate the sign of the fraction in these intervals. We find that the fraction is negative in the intervals
[tex]\[ (-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty) \][/tex]
6. Solution:
So, the solution to the inequality [tex]\( \frac{x^2 - 1}{x^2 + 4x + 1} < 1 \)[/tex] is
[tex]\[ \boxed{(-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty)} \][/tex]
1. Rewrite the Inequality:
First, subtract 1 from both sides of the inequality to set it to 0.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - 1 < 0 \][/tex]
2. Combine the Fractions:
Express the inequality as a single fraction.
[tex]\[ \frac{x^2 - 1}{x^2 + 4x + 1} - \frac{x^2 + 4x + 1}{x^2 + 4x + 1} < 0 \][/tex]
Simplify the numerator:
[tex]\[ \frac{x^2 - 1 - (x^2 + 4x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{x^2 - 1 - x^2 - 4x - 1}{x^2 + 4x + 1} < 0 \][/tex]
[tex]\[ \frac{-4x - 2}{x^2 + 4x + 1} < 0 \][/tex]
3. Factor the Numerator and Denominator:
Note that the numerator [tex]\(-4x - 2\)[/tex] can be factored as:
[tex]\[ -2(2x + 1) \][/tex]
Therefore, our inequality is:
[tex]\[ \frac{-2(2x + 1)}{x^2 + 4x + 1} < 0 \][/tex]
Now we need to find the intervals where this fraction is negative.
4. Determine Critical Points:
Critical points occur where the numerator or denominator are zero. Set the numerator [tex]\(-2(2x + 1)\)[/tex] to zero:
[tex]\[ -2(2x + 1) = 0 \quad \Rightarrow \quad 2x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2} \][/tex]
Set the denominator [tex]\(x^2 + 4x + 1\)[/tex] to zero. Find the roots using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{-4 \pm \sqrt{16 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{12}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 2\sqrt{3}}{2} \][/tex]
[tex]\[ x = -2 \pm \sqrt{3} \][/tex]
So, the roots are [tex]\( x = -2 - \sqrt{3} \)[/tex] and [tex]\( x = -2 + \sqrt{3} \)[/tex].
5. Test Intervals Between Critical Points:
Determine the sign of the fraction in the intervals defined by the critical points [tex]\( x = -2 - \sqrt{3} \)[/tex], [tex]\( x = -\frac{1}{2} \)[/tex], and [tex]\( x = -2 + \sqrt{3} \)[/tex].
- For [tex]\( x < -2 - \sqrt{3} \)[/tex]: Choose [tex]\( x = -4 \)[/tex]
- For [tex]\( -2 - \sqrt{3} < x < -\frac{1}{2} \)[/tex]: Choose [tex]\( x = -2 \)[/tex]
- For [tex]\( -\frac{1}{2} < x < -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 0 \)[/tex]
- For [tex]\( x > -2 + \sqrt{3} \)[/tex]: Choose [tex]\( x = 2 \)[/tex]
Evaluate the sign of the fraction in these intervals. We find that the fraction is negative in the intervals
[tex]\[ (-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty) \][/tex]
6. Solution:
So, the solution to the inequality [tex]\( \frac{x^2 - 1}{x^2 + 4x + 1} < 1 \)[/tex] is
[tex]\[ \boxed{(-2 - \sqrt{3}, -\frac{1}{2}) \cup (-2 + \sqrt{3}, \infty)} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.