Get expert insights and community-driven knowledge on IDNLearn.com. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
To determine the values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex] that make the pair of linear equations have an infinite number of solutions, we need to ensure they are equivalent equations. For this to happen, the equations must have the same ratio for the coefficients of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and their constant terms.
The given equations are:
1. [tex]\((2m - 1)x + 3y = 5\)[/tex]
2. [tex]\(3x + (n - 1)y = 2\)[/tex]
Let's denote the coefficients of the first equation as [tex]\(a_1\)[/tex], [tex]\(b_1\)[/tex], and [tex]\(c_1\)[/tex], and for the second equation as [tex]\(a_2\)[/tex], [tex]\(b_2\)[/tex], and [tex]\(c_2\)[/tex]. Therefore:
- [tex]\(a_1 = 2m - 1\)[/tex]
- [tex]\(b_1 = 3\)[/tex]
- [tex]\(c_1 = 5\)[/tex]
- [tex]\(a_2 = 3\)[/tex]
- [tex]\(b_2 = n - 1\)[/tex]
- [tex]\(c_2 = 2\)[/tex]
For the equations to have an infinite number of solutions, the following ratios must hold true:
[tex]\[ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \][/tex]
Using the ratios:
1. [tex]\[\frac{a_1}{a_2} = \frac{2m - 1}{3}\][/tex]
2. [tex]\[\frac{b_1}{b_2} = \frac{3}{n - 1}\][/tex]
3. [tex]\[\frac{c_1}{c_2} = \frac{5}{2}\][/tex]
First, let's equate [tex]\(\frac{a_1}{a_2}\)[/tex] and [tex]\(\frac{c_1}{c_2}\)[/tex]:
[tex]\[ \frac{2m - 1}{3} = \frac{5}{2} \][/tex]
Cross-multiplying:
[tex]\[ 2(2m - 1) = 3 \cdot 5 \][/tex]
[tex]\[ 4m - 2 = 15 \][/tex]
[tex]\[ 4m = 17 \][/tex]
[tex]\[ m = \frac{17}{4} = 4.25 \][/tex]
Next, let's equate [tex]\(\frac{b_1}{b_2}\)[/tex] and [tex]\(\frac{c_1}{c_2}\)[/tex]:
[tex]\[ \frac{3}{n - 1} = \frac{5}{2} \][/tex]
Cross-multiplying:
[tex]\[ 3 \cdot 2 = 5 \cdot (n - 1) \][/tex]
[tex]\[ 6 = 5n - 5 \][/tex]
[tex]\[ 5n = 11 \][/tex]
[tex]\[ n = \frac{11}{5} = 2.2 \][/tex]
Therefore, the values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex] that make the given pair of linear equations have an infinite number of solutions are:
[tex]\[ m = 4.25 \quad \text{and} \quad n = 2.2 \][/tex]
The given equations are:
1. [tex]\((2m - 1)x + 3y = 5\)[/tex]
2. [tex]\(3x + (n - 1)y = 2\)[/tex]
Let's denote the coefficients of the first equation as [tex]\(a_1\)[/tex], [tex]\(b_1\)[/tex], and [tex]\(c_1\)[/tex], and for the second equation as [tex]\(a_2\)[/tex], [tex]\(b_2\)[/tex], and [tex]\(c_2\)[/tex]. Therefore:
- [tex]\(a_1 = 2m - 1\)[/tex]
- [tex]\(b_1 = 3\)[/tex]
- [tex]\(c_1 = 5\)[/tex]
- [tex]\(a_2 = 3\)[/tex]
- [tex]\(b_2 = n - 1\)[/tex]
- [tex]\(c_2 = 2\)[/tex]
For the equations to have an infinite number of solutions, the following ratios must hold true:
[tex]\[ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \][/tex]
Using the ratios:
1. [tex]\[\frac{a_1}{a_2} = \frac{2m - 1}{3}\][/tex]
2. [tex]\[\frac{b_1}{b_2} = \frac{3}{n - 1}\][/tex]
3. [tex]\[\frac{c_1}{c_2} = \frac{5}{2}\][/tex]
First, let's equate [tex]\(\frac{a_1}{a_2}\)[/tex] and [tex]\(\frac{c_1}{c_2}\)[/tex]:
[tex]\[ \frac{2m - 1}{3} = \frac{5}{2} \][/tex]
Cross-multiplying:
[tex]\[ 2(2m - 1) = 3 \cdot 5 \][/tex]
[tex]\[ 4m - 2 = 15 \][/tex]
[tex]\[ 4m = 17 \][/tex]
[tex]\[ m = \frac{17}{4} = 4.25 \][/tex]
Next, let's equate [tex]\(\frac{b_1}{b_2}\)[/tex] and [tex]\(\frac{c_1}{c_2}\)[/tex]:
[tex]\[ \frac{3}{n - 1} = \frac{5}{2} \][/tex]
Cross-multiplying:
[tex]\[ 3 \cdot 2 = 5 \cdot (n - 1) \][/tex]
[tex]\[ 6 = 5n - 5 \][/tex]
[tex]\[ 5n = 11 \][/tex]
[tex]\[ n = \frac{11}{5} = 2.2 \][/tex]
Therefore, the values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex] that make the given pair of linear equations have an infinite number of solutions are:
[tex]\[ m = 4.25 \quad \text{and} \quad n = 2.2 \][/tex]
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.