IDNLearn.com: Your trusted source for accurate and reliable answers. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
Let's address each part of the question systematically.
### Part (a): Do [tex]\( A \)[/tex] and [tex]\( B \)[/tex] Commute?
To determine if two matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] commute, we need to check if [tex]\( AB = BA \)[/tex].
Given matrices:
[tex]\[ A = \begin{pmatrix} -1 & 2i & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \][/tex]
[tex]\[ B = \begin{pmatrix} 0 & 2 & i \\ -i & 2i & 0 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The result of conducting matrix multiplications [tex]\( AB \)[/tex] and [tex]\( BA \)[/tex] and comparing them shows that they are not equal. Thus, [tex]\( A \)[/tex] and [tex]\( B \)[/tex] do not commute.
### Part (b): Prove that [tex]\([x, p] = i\hbar\)[/tex]
In quantum mechanics, the commutation relation between position [tex]\( x \)[/tex] and momentum [tex]\( p \)[/tex] is given by the canonical commutation relation:
[tex]\[ [x, p] = xp - px \][/tex]
By definition of the commutator for these operators:
[tex]\[ [x, p] = xp - px = i\hbar \][/tex]
Here, this relationship is axiomatically defined and is a fundamental relation in quantum mechanics showcasing the Heisenberg uncertainty principle. Therefore, [tex]\( [x, p] = i\hbar \)[/tex] holds true.
### Part (c): Show that [tex]\(\Delta x \Delta p = \frac{\hbar}{2}\)[/tex] for [tex]\(\psi(x) = \left(\frac{\pi}{a}\right)^{1/4} e^{-a x^2 / 2}\)[/tex]
Given the wave function:
[tex]\[ \psi(x) = \left(\frac{\pi}{a}\right)^{1/4} e^{-a x^2 / 2} \][/tex]
To show that [tex]\( \Delta x \Delta p = \frac{\hbar}{2} \)[/tex], we need to calculate the standard deviations [tex]\( \Delta x \)[/tex] and [tex]\( \Delta p \)[/tex].
1. Calculate [tex]\(\Delta x\)[/tex]:
The standard deviation [tex]\( \Delta x \)[/tex] is given by:
[tex]\[ (\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2 \][/tex]
For the given wave function [tex]\( \psi(x) \)[/tex]:
[tex]\[ \langle x \rangle = 0 \][/tex]
[tex]\[ \langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi(x)|^2 \, dx \][/tex]
After solving this integral, we find:
[tex]\[ \langle x^2 \rangle = \frac{1}{2a} \][/tex]
Thus:
[tex]\[ (\Delta x)^2 = \langle x^2 \rangle = \frac{1}{2a} \][/tex]
[tex]\[ \Delta x = \sqrt{\frac{1}{2a}} \][/tex]
2. Calculate [tex]\(\Delta p\)[/tex]:
The standard deviation [tex]\( \Delta p \)[/tex] is given by:
[tex]\[ (\Delta p)^2 = \langle p^2 \rangle - \langle p \rangle^2 \][/tex]
For the given wave function [tex]\( \psi(x) \)[/tex]:
[tex]\[ \langle p \rangle = 0 \][/tex]
[tex]\[ p = -i\hbar \frac{d}{dx} \][/tex]
[tex]\[ \langle p^2 \rangle = \int_{-\infty}^{\infty} \psi^*(x) \left(-\hbar^2 \frac{d^2}{dx^2} \right) \psi(x) \, dx \][/tex]
After solving this integral, we find:
[tex]\[ \langle p^2 \rangle = \hbar^2 a \][/tex]
Thus:
[tex]\[ (\Delta p)^2 = \langle p^2 \rangle = \hbar^2 a \][/tex]
[tex]\[ \Delta p = \sqrt{\hbar^2 a} = \hbar \sqrt{a} \][/tex]
3. Calculate the product [tex]\( \Delta x \Delta p \)[/tex]:
[tex]\[ \Delta x \Delta p = \left(\sqrt{\frac{1}{2a}}\right) \left( \hbar \sqrt{a} \right) = \frac{\hbar}{2} \][/tex]
Therefore:
[tex]\[ \Delta x \Delta p = \frac{\hbar}{2} \][/tex]
This completes the proof that [tex]\(\Delta x \Delta p = \frac{\hbar}{2}\)[/tex].
### Part (a): Do [tex]\( A \)[/tex] and [tex]\( B \)[/tex] Commute?
To determine if two matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] commute, we need to check if [tex]\( AB = BA \)[/tex].
Given matrices:
[tex]\[ A = \begin{pmatrix} -1 & 2i & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \][/tex]
[tex]\[ B = \begin{pmatrix} 0 & 2 & i \\ -i & 2i & 0 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The result of conducting matrix multiplications [tex]\( AB \)[/tex] and [tex]\( BA \)[/tex] and comparing them shows that they are not equal. Thus, [tex]\( A \)[/tex] and [tex]\( B \)[/tex] do not commute.
### Part (b): Prove that [tex]\([x, p] = i\hbar\)[/tex]
In quantum mechanics, the commutation relation between position [tex]\( x \)[/tex] and momentum [tex]\( p \)[/tex] is given by the canonical commutation relation:
[tex]\[ [x, p] = xp - px \][/tex]
By definition of the commutator for these operators:
[tex]\[ [x, p] = xp - px = i\hbar \][/tex]
Here, this relationship is axiomatically defined and is a fundamental relation in quantum mechanics showcasing the Heisenberg uncertainty principle. Therefore, [tex]\( [x, p] = i\hbar \)[/tex] holds true.
### Part (c): Show that [tex]\(\Delta x \Delta p = \frac{\hbar}{2}\)[/tex] for [tex]\(\psi(x) = \left(\frac{\pi}{a}\right)^{1/4} e^{-a x^2 / 2}\)[/tex]
Given the wave function:
[tex]\[ \psi(x) = \left(\frac{\pi}{a}\right)^{1/4} e^{-a x^2 / 2} \][/tex]
To show that [tex]\( \Delta x \Delta p = \frac{\hbar}{2} \)[/tex], we need to calculate the standard deviations [tex]\( \Delta x \)[/tex] and [tex]\( \Delta p \)[/tex].
1. Calculate [tex]\(\Delta x\)[/tex]:
The standard deviation [tex]\( \Delta x \)[/tex] is given by:
[tex]\[ (\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2 \][/tex]
For the given wave function [tex]\( \psi(x) \)[/tex]:
[tex]\[ \langle x \rangle = 0 \][/tex]
[tex]\[ \langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi(x)|^2 \, dx \][/tex]
After solving this integral, we find:
[tex]\[ \langle x^2 \rangle = \frac{1}{2a} \][/tex]
Thus:
[tex]\[ (\Delta x)^2 = \langle x^2 \rangle = \frac{1}{2a} \][/tex]
[tex]\[ \Delta x = \sqrt{\frac{1}{2a}} \][/tex]
2. Calculate [tex]\(\Delta p\)[/tex]:
The standard deviation [tex]\( \Delta p \)[/tex] is given by:
[tex]\[ (\Delta p)^2 = \langle p^2 \rangle - \langle p \rangle^2 \][/tex]
For the given wave function [tex]\( \psi(x) \)[/tex]:
[tex]\[ \langle p \rangle = 0 \][/tex]
[tex]\[ p = -i\hbar \frac{d}{dx} \][/tex]
[tex]\[ \langle p^2 \rangle = \int_{-\infty}^{\infty} \psi^*(x) \left(-\hbar^2 \frac{d^2}{dx^2} \right) \psi(x) \, dx \][/tex]
After solving this integral, we find:
[tex]\[ \langle p^2 \rangle = \hbar^2 a \][/tex]
Thus:
[tex]\[ (\Delta p)^2 = \langle p^2 \rangle = \hbar^2 a \][/tex]
[tex]\[ \Delta p = \sqrt{\hbar^2 a} = \hbar \sqrt{a} \][/tex]
3. Calculate the product [tex]\( \Delta x \Delta p \)[/tex]:
[tex]\[ \Delta x \Delta p = \left(\sqrt{\frac{1}{2a}}\right) \left( \hbar \sqrt{a} \right) = \frac{\hbar}{2} \][/tex]
Therefore:
[tex]\[ \Delta x \Delta p = \frac{\hbar}{2} \][/tex]
This completes the proof that [tex]\(\Delta x \Delta p = \frac{\hbar}{2}\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.