Join IDNLearn.com and start getting the answers you've been searching for. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Given the reaction:

[tex]\[ A + B \rightarrow C \][/tex]

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
\begin{tabular}{l}
Experiment \\
Number
\end{tabular} & $[A] \, (M)$ & $[B] \, (M)$ & \begin{tabular}{l}
Initial Rate \\
$(M/s)$
\end{tabular} \\
\hline
1 & 0.451 & 0.885 & 1.13 \\
\hline
2 & 0.451 & 1.77 & 1.13 \\
\hline
3 & 1.35 & 0.885 & 10.17 \\
\hline
\end{tabular}
\][/tex]

The rate law for this reaction is:

[tex]\[ \text{rate} = \][/tex]

A. [tex]\( k [A]^2 [B]^2 \)[/tex]
B. [tex]\( k [A]^2 [B] \)[/tex]
C. [tex]\( k [A]^2 \)[/tex]
D. [tex]\( k [P] \)[/tex]
E. [tex]\( k [A] [B] \)[/tex]


Sagot :

To determine the rate law for the reaction [tex]\( A + B \rightarrow C \)[/tex], we need to analyze the given experimental data by comparing how different concentrations of [tex]\(A\)[/tex] and [tex]\(B\)[/tex] affect the initial reaction rate. Here's a step-by-step explanation:

1. Examine the experimental data:
- Experiment 1: [tex]\([A] = 0.451 \, M\)[/tex], [tex]\([B] = 0.885 \, M\)[/tex], rate [tex]\( = 1.13 \, M/s\)[/tex]
- Experiment 2: [tex]\([A] = 0.451 \, M\)[/tex], [tex]\([B] = 1.77 \, M\)[/tex], rate [tex]\( = 1.13 \, M/s\)[/tex]
- Experiment 3: [tex]\([A] = 1.35 \, M\)[/tex], [tex]\([B] = 0.885 \, M\)[/tex], rate [tex]\( = 10.17 \, M/s\)[/tex]

2. Determine the order with respect to [tex]\(A\)[/tex] by comparing Experiments 1 and 3 where [tex]\([B]\)[/tex] is constant:
- [tex]\( \text{Rate}_1 = k[A]_1^n[B]_1^m \)[/tex]
- [tex]\( \text{Rate}_3 = k[A]_3^n[B]_1^m \)[/tex]

Using the provided data:
- [tex]\( \text{Rate}_1 = 1.13 \, M/s \)[/tex]
- [tex]\( \text{Rate}_3 = 10.17 \, M/s \)[/tex]
- [tex]\( [A]_1 = 0.451 \, M \)[/tex]
- [tex]\( [A]_3 = 1.35 \, M \)[/tex]

Plugging these into the rate expression ratio:
[tex]\[ \frac{\text{Rate}_3}{\text{Rate}_1} = \left(\frac{[A]_3}{[A]_1}\right)^n \][/tex]
[tex]\[ \frac{10.17}{1.13} = \left(\frac{1.35}{0.451}\right)^n \][/tex]

Solving for [tex]\(n\)[/tex]:
[tex]\[ \frac{10.17}{1.13} \approx 9 \][/tex]
[tex]\[ \left(\frac{1.35}{0.451}\right)^n \approx 3^n \][/tex]
[tex]\[ n \approx 2 \][/tex]

3. Determine the order with respect to [tex]\(B\)[/tex] by comparing Experiments 1 and 2 where [tex]\([A]\)[/tex] is constant:
- [tex]\( \text{Rate}_1 = k[A]_1^n[B]_1^m \)[/tex]
- [tex]\( \text{Rate}_2 = k[A]_1^n[B]_2^m \)[/tex]

Using the provided data:
- [tex]\( \text{Rate}_1 = 1.13 \, M/s \)[/tex]
- [tex]\( \text{Rate}_2 = 1.13 \, M/s \)[/tex]
- [tex]\( [B]_1 = 0.885 \, M \)[/tex]
- [tex]\( [B]_2 = 1.77 \, M \)[/tex]

Plugging these into the rate expression ratio:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_1} = \left(\frac{[B]_2}{[B]_1}\right)^m \][/tex]
[tex]\[ \frac{1.13}{1.13} = \left(\frac{1.77}{0.885}\right)^m \][/tex]

Solving for [tex]\( m \)[/tex]:
[tex]\[ 1 = 2^m \][/tex]
[tex]\[ m = 0 \][/tex]

4. Write the rate law:
The exponents [tex]\( n \)[/tex] and [tex]\( m \)[/tex] represent the orders of the reaction with respect to [tex]\( A \)[/tex] and [tex]\( B \)[/tex] respectively. Here, [tex]\( n = 2 \)[/tex] and [tex]\( m = 0 \)[/tex]. Hence, the rate law can be written as:
[tex]\[ \text{Rate} = k[A]^2 \][/tex]

5. Verify the rate law:
Given [tex]\( n = 2 \)[/tex] and [tex]\( m = 0 \)[/tex], the most appropriate rate law from the options is:
[tex]\[ \boxed{k[A]^2} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.