Find accurate and reliable answers to your questions on IDNLearn.com. Discover trustworthy solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
To find the limit [tex]\(\lim _{x \rightarrow 2} \frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2}\)[/tex], let's go through it step by step.
1. Direct Substitution:
First, if we directly substitute [tex]\( x = 2 \)[/tex] into the function [tex]\(\frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2}\)[/tex]:
[tex]\[ \frac{\sqrt{2 + \sqrt{2 + 2}} - 2}{2 - 2} = \frac{\sqrt{2 + \sqrt{4}} - 2}{0} = \frac{\sqrt{2 + 2} - 2}{0} = \frac{\sqrt{4} - 2}{0} = \frac{2 - 2}{0} = \frac{0}{0} \][/tex]
This produces an indeterminate form [tex]\(\frac{0}{0}\)[/tex], which means further analysis is needed.
2. L'Hopital's Rule:
Since the direct substitution led to an indeterminate form [tex]\(\frac{0}{0}\)[/tex], we can apply L'Hopital's Rule, which states that if [tex]\(\lim_{x \to a} \frac{f(x)}{g(x)}\)[/tex] yields an indeterminate form, the limit can be evaluated as:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \][/tex]
provided the limit on the right exists. Here:
[tex]\[ f(x) = \sqrt{2 + \sqrt{2 + x}} - 2, \quad g(x) = x - 2 \][/tex]
3. Differentiate the Numerator and Denominator:
Differentiate [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ f(x) = \sqrt{2 + \sqrt{2 + x}} - 2 \][/tex]
The derivative [tex]\( f'(x) \)[/tex] involves the chain rule. Let [tex]\( u = 2 + \sqrt{2 + x} \)[/tex]. Then,
[tex]\[ f(x) = \sqrt{u} - 2 \][/tex]
So,
[tex]\[ f'(x) = \frac{d}{dx} (\sqrt{u}) = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
Now,
[tex]\[ \frac{du}{dx} = \frac{d}{dx} (2 + \sqrt{2 + x}) = \frac{d}{dx} (\sqrt{2 + x}) = \frac{1}{2\sqrt{2 + x}} \][/tex]
Putting it all together,
[tex]\[ f'(x) = \frac{1}{2\sqrt{2 + \sqrt{2 + x}}} \cdot \frac{1}{2\sqrt{2 + x}} \][/tex]
Simplify:
[tex]\[ f'(x) = \frac{1}{4\sqrt{2 + \sqrt{2 + x}} \sqrt{2 + x}} \][/tex]
The derivative of the denominator [tex]\( g(x) = x - 2 \)[/tex] is simply:
[tex]\[ g'(x) = 1 \][/tex]
4. Apply L'Hopital's Rule:
Now, we can apply L'Hopital's Rule:
[tex]\[ \lim_{x \to 2} \frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2} = \lim_{x \to 2} \frac{\frac{1}{4\sqrt{2 + \sqrt{2 + x}} \sqrt{2 + x}}}{1} \][/tex]
5. Evaluate the Limit:
Substitute [tex]\( x = 2 \)[/tex] in the simplified derivative:
[tex]\[ \lim_{x \to 2} \frac{1}{4\sqrt{2 + \sqrt{2 + x}} \sqrt{2 + x}} = \frac{1}{4\sqrt{2 + \sqrt{4}} \sqrt{4}} = \frac{1}{4\sqrt{2 + 2} \cdot 2} = \frac{1}{4 \cdot 2 \cdot 2} = \frac{1}{16} \][/tex]
6. Final Answer:
Therefore, the limit is:
[tex]\[ \lim _{x \rightarrow 2} \frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2} = \frac{1}{16} \][/tex]
1. Direct Substitution:
First, if we directly substitute [tex]\( x = 2 \)[/tex] into the function [tex]\(\frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2}\)[/tex]:
[tex]\[ \frac{\sqrt{2 + \sqrt{2 + 2}} - 2}{2 - 2} = \frac{\sqrt{2 + \sqrt{4}} - 2}{0} = \frac{\sqrt{2 + 2} - 2}{0} = \frac{\sqrt{4} - 2}{0} = \frac{2 - 2}{0} = \frac{0}{0} \][/tex]
This produces an indeterminate form [tex]\(\frac{0}{0}\)[/tex], which means further analysis is needed.
2. L'Hopital's Rule:
Since the direct substitution led to an indeterminate form [tex]\(\frac{0}{0}\)[/tex], we can apply L'Hopital's Rule, which states that if [tex]\(\lim_{x \to a} \frac{f(x)}{g(x)}\)[/tex] yields an indeterminate form, the limit can be evaluated as:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \][/tex]
provided the limit on the right exists. Here:
[tex]\[ f(x) = \sqrt{2 + \sqrt{2 + x}} - 2, \quad g(x) = x - 2 \][/tex]
3. Differentiate the Numerator and Denominator:
Differentiate [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ f(x) = \sqrt{2 + \sqrt{2 + x}} - 2 \][/tex]
The derivative [tex]\( f'(x) \)[/tex] involves the chain rule. Let [tex]\( u = 2 + \sqrt{2 + x} \)[/tex]. Then,
[tex]\[ f(x) = \sqrt{u} - 2 \][/tex]
So,
[tex]\[ f'(x) = \frac{d}{dx} (\sqrt{u}) = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
Now,
[tex]\[ \frac{du}{dx} = \frac{d}{dx} (2 + \sqrt{2 + x}) = \frac{d}{dx} (\sqrt{2 + x}) = \frac{1}{2\sqrt{2 + x}} \][/tex]
Putting it all together,
[tex]\[ f'(x) = \frac{1}{2\sqrt{2 + \sqrt{2 + x}}} \cdot \frac{1}{2\sqrt{2 + x}} \][/tex]
Simplify:
[tex]\[ f'(x) = \frac{1}{4\sqrt{2 + \sqrt{2 + x}} \sqrt{2 + x}} \][/tex]
The derivative of the denominator [tex]\( g(x) = x - 2 \)[/tex] is simply:
[tex]\[ g'(x) = 1 \][/tex]
4. Apply L'Hopital's Rule:
Now, we can apply L'Hopital's Rule:
[tex]\[ \lim_{x \to 2} \frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2} = \lim_{x \to 2} \frac{\frac{1}{4\sqrt{2 + \sqrt{2 + x}} \sqrt{2 + x}}}{1} \][/tex]
5. Evaluate the Limit:
Substitute [tex]\( x = 2 \)[/tex] in the simplified derivative:
[tex]\[ \lim_{x \to 2} \frac{1}{4\sqrt{2 + \sqrt{2 + x}} \sqrt{2 + x}} = \frac{1}{4\sqrt{2 + \sqrt{4}} \sqrt{4}} = \frac{1}{4\sqrt{2 + 2} \cdot 2} = \frac{1}{4 \cdot 2 \cdot 2} = \frac{1}{16} \][/tex]
6. Final Answer:
Therefore, the limit is:
[tex]\[ \lim _{x \rightarrow 2} \frac{\sqrt{2 + \sqrt{2 + x}} - 2}{x - 2} = \frac{1}{16} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.