Join IDNLearn.com and start exploring the answers to your most pressing questions. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
To determine for which ranges [tex]\( f(x) \)[/tex] is positive or negative, we need to analyze the function [tex]\( f(x) = \frac{x+4}{x^2 - 3x - 28} \)[/tex]. Here’s a detailed step-by-step solution:
1. Find the zeroes of the numerator: We set the numerator [tex]\( x + 4 \)[/tex] equal to zero:
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
So, the zero of the numerator is [tex]\( x = -4 \)[/tex].
2. Find the zeroes of the denominator: We set the denominator [tex]\( x^2 - 3x - 28 \)[/tex] equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 3x - 28 = 0 \][/tex]
Solving this quadratic equation:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 112}}{2} = \frac{3 \pm \sqrt{121}}{2} = \frac{3 \pm 11}{2} \][/tex]
This gives:
[tex]\[ x = \frac{3 + 11}{2} = 7 \quad \text{and} \quad x = \frac{3 - 11}{2} = -4 \][/tex]
Hence, the zeroes of the denominator are [tex]\( x = -4 \)[/tex] and [tex]\( x = 7 \)[/tex].
3. Identify the critical points and their intervals: The critical points where the function changes behavior are [tex]\( x = -4 \)[/tex] and [tex]\( x = 7 \)[/tex]. These points divide the real number line into the intervals:
[tex]\[ (-\infty, -4), \quad (-4, 7), \quad (7, \infty) \][/tex]
4. Test the sign of [tex]\( f(x) \)[/tex] in each interval: We choose test points in each interval and check the sign of [tex]\( f(x) \)[/tex].
- For the interval [tex]\((- \infty, -4) \)[/tex], we choose [tex]\( x = -10 \)[/tex]:
[tex]\[ f(-10) = \frac{-10 + 4}{(-10)^2 - 3(-10) - 28} = \frac{-6}{100 - 30 - 28} = \frac{-6}{42} < 0 \][/tex]
So, [tex]\( f(x) \)[/tex] is negative in [tex]\((- \infty, -4) \)[/tex].
- For the interval [tex]\( (-4, 7) \)[/tex], we choose [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{0 + 4}{0^2 - 3(0) - 28} = \frac{4}{-28} = -\frac{1}{7} < 0 \][/tex]
So, [tex]\( f(x) \)[/tex] is negative in [tex]\((-4, 7) \)[/tex].
- For the interval [tex]\( (7, \infty) \)[/tex], we choose [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \frac{8 + 4}{8^2 - 3(8) - 28} = \frac{12}{64 - 24 - 28} = \frac{12}{12} = 1 > 0 \][/tex]
So, [tex]\( f(x) \)[/tex] is positive in [tex]\( (7, \infty) \)[/tex].
Since [tex]\( f(-4) \)[/tex] is not defined because it makes the denominator zero, we exclude [tex]\( x = -4 \)[/tex].
5. Conclusions about the sign of [tex]\( f(x) \)[/tex]:
- [tex]\( f(x) \)[/tex] is negative for [tex]\( x < -4 \)[/tex] and [tex]\( -4 < x < 7 \)[/tex].
- [tex]\( f(x) \)[/tex] is positive for [tex]\( x > 7 \)[/tex].
From the intervals where we determined the sign of [tex]\( f(x) \)[/tex], we can conclude that:
- [tex]\( f(x) \)[/tex] is negative for [tex]\( x < 7 \)[/tex].
- [tex]\( f(x) \)[/tex] is not positive for all [tex]\( x > -4 \)[/tex], nor negative for all [tex]\( x > -4 \)[/tex].
Thus, the correct conclusion is:
[tex]\[ \text{f(x) is negative for all } x < 7.\][/tex]
1. Find the zeroes of the numerator: We set the numerator [tex]\( x + 4 \)[/tex] equal to zero:
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
So, the zero of the numerator is [tex]\( x = -4 \)[/tex].
2. Find the zeroes of the denominator: We set the denominator [tex]\( x^2 - 3x - 28 \)[/tex] equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 3x - 28 = 0 \][/tex]
Solving this quadratic equation:
[tex]\[ x = \frac{3 \pm \sqrt{9 + 112}}{2} = \frac{3 \pm \sqrt{121}}{2} = \frac{3 \pm 11}{2} \][/tex]
This gives:
[tex]\[ x = \frac{3 + 11}{2} = 7 \quad \text{and} \quad x = \frac{3 - 11}{2} = -4 \][/tex]
Hence, the zeroes of the denominator are [tex]\( x = -4 \)[/tex] and [tex]\( x = 7 \)[/tex].
3. Identify the critical points and their intervals: The critical points where the function changes behavior are [tex]\( x = -4 \)[/tex] and [tex]\( x = 7 \)[/tex]. These points divide the real number line into the intervals:
[tex]\[ (-\infty, -4), \quad (-4, 7), \quad (7, \infty) \][/tex]
4. Test the sign of [tex]\( f(x) \)[/tex] in each interval: We choose test points in each interval and check the sign of [tex]\( f(x) \)[/tex].
- For the interval [tex]\((- \infty, -4) \)[/tex], we choose [tex]\( x = -10 \)[/tex]:
[tex]\[ f(-10) = \frac{-10 + 4}{(-10)^2 - 3(-10) - 28} = \frac{-6}{100 - 30 - 28} = \frac{-6}{42} < 0 \][/tex]
So, [tex]\( f(x) \)[/tex] is negative in [tex]\((- \infty, -4) \)[/tex].
- For the interval [tex]\( (-4, 7) \)[/tex], we choose [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{0 + 4}{0^2 - 3(0) - 28} = \frac{4}{-28} = -\frac{1}{7} < 0 \][/tex]
So, [tex]\( f(x) \)[/tex] is negative in [tex]\((-4, 7) \)[/tex].
- For the interval [tex]\( (7, \infty) \)[/tex], we choose [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \frac{8 + 4}{8^2 - 3(8) - 28} = \frac{12}{64 - 24 - 28} = \frac{12}{12} = 1 > 0 \][/tex]
So, [tex]\( f(x) \)[/tex] is positive in [tex]\( (7, \infty) \)[/tex].
Since [tex]\( f(-4) \)[/tex] is not defined because it makes the denominator zero, we exclude [tex]\( x = -4 \)[/tex].
5. Conclusions about the sign of [tex]\( f(x) \)[/tex]:
- [tex]\( f(x) \)[/tex] is negative for [tex]\( x < -4 \)[/tex] and [tex]\( -4 < x < 7 \)[/tex].
- [tex]\( f(x) \)[/tex] is positive for [tex]\( x > 7 \)[/tex].
From the intervals where we determined the sign of [tex]\( f(x) \)[/tex], we can conclude that:
- [tex]\( f(x) \)[/tex] is negative for [tex]\( x < 7 \)[/tex].
- [tex]\( f(x) \)[/tex] is not positive for all [tex]\( x > -4 \)[/tex], nor negative for all [tex]\( x > -4 \)[/tex].
Thus, the correct conclusion is:
[tex]\[ \text{f(x) is negative for all } x < 7.\][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.