Join the growing community of curious minds on IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
To fill in the [tex]$y$[/tex] values of the [tex]$t$[/tex]-table for the function [tex]\( y = \sqrt[3]{x} \)[/tex], we need to calculate the cube root of each given [tex]\( x \)[/tex] value. The [tex]$t$[/tex]-table provides specific [tex]\( x \)[/tex] values, and we will find the corresponding [tex]\( y \)[/tex] values, constructing it step-by-step.
Given:
[tex]\( x = -8, -1, 0, 1, 8 \)[/tex]
[tex]\( y = \sqrt[3]{x} \)[/tex]
1. For [tex]\( x = -8 \)[/tex]:
We find [tex]\( y = \sqrt[3]{-8} \)[/tex].
The cube root of [tex]\( -8 \)[/tex] yields [tex]\( (1.0000000000000002+1.7320508075688772j) \)[/tex].
2. For [tex]\( x = -1 \)[/tex]:
We find [tex]\( y = \sqrt[3]{-1} \)[/tex].
The cube root of [tex]\( -1 \)[/tex] yields [tex]\( (0.5000000000000001+0.8660254037844386j) \)[/tex].
3. For [tex]\( x = 0 \)[/tex]:
We find [tex]\( y = \sqrt[3]{0} \)[/tex].
The cube root of [tex]\( 0 \)[/tex] is simply [tex]\( 0 \)[/tex].
4. For [tex]\( x = 1 \)[/tex]:
We find [tex]\( y = \sqrt[3]{1} \)[/tex].
The cube root of [tex]\( 1 \)[/tex] is simply [tex]\( 1 \)[/tex].
5. For [tex]\( x = 8 \)[/tex]:
We find [tex]\( y = \sqrt[3]{8} \)[/tex].
The cube root of [tex]\( 8 \)[/tex] is simply [tex]\( 2 \)[/tex].
Thus, the completed [tex]\( t \)[/tex]-table looks like this:
[tex]\[ \begin{tabular}{c|c} $x$ & $y$ \\ \hline -8 & (1.0000000000000002+1.7320508075688772j) \\ -1 & (0.5000000000000001+0.8660254037844386j) \\ 0 & 0.0 \\ 1 & 1.0 \\ 8 & 2.0 \\ \end{tabular} \][/tex]
This table gives the precise [tex]\( y \)[/tex]-values for each corresponding [tex]\( x \)[/tex]-value for the function [tex]\( y = \sqrt[3]{x} \)[/tex].
Given:
[tex]\( x = -8, -1, 0, 1, 8 \)[/tex]
[tex]\( y = \sqrt[3]{x} \)[/tex]
1. For [tex]\( x = -8 \)[/tex]:
We find [tex]\( y = \sqrt[3]{-8} \)[/tex].
The cube root of [tex]\( -8 \)[/tex] yields [tex]\( (1.0000000000000002+1.7320508075688772j) \)[/tex].
2. For [tex]\( x = -1 \)[/tex]:
We find [tex]\( y = \sqrt[3]{-1} \)[/tex].
The cube root of [tex]\( -1 \)[/tex] yields [tex]\( (0.5000000000000001+0.8660254037844386j) \)[/tex].
3. For [tex]\( x = 0 \)[/tex]:
We find [tex]\( y = \sqrt[3]{0} \)[/tex].
The cube root of [tex]\( 0 \)[/tex] is simply [tex]\( 0 \)[/tex].
4. For [tex]\( x = 1 \)[/tex]:
We find [tex]\( y = \sqrt[3]{1} \)[/tex].
The cube root of [tex]\( 1 \)[/tex] is simply [tex]\( 1 \)[/tex].
5. For [tex]\( x = 8 \)[/tex]:
We find [tex]\( y = \sqrt[3]{8} \)[/tex].
The cube root of [tex]\( 8 \)[/tex] is simply [tex]\( 2 \)[/tex].
Thus, the completed [tex]\( t \)[/tex]-table looks like this:
[tex]\[ \begin{tabular}{c|c} $x$ & $y$ \\ \hline -8 & (1.0000000000000002+1.7320508075688772j) \\ -1 & (0.5000000000000001+0.8660254037844386j) \\ 0 & 0.0 \\ 1 & 1.0 \\ 8 & 2.0 \\ \end{tabular} \][/tex]
This table gives the precise [tex]\( y \)[/tex]-values for each corresponding [tex]\( x \)[/tex]-value for the function [tex]\( y = \sqrt[3]{x} \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.