Find expert answers and community insights on IDNLearn.com. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Sure, let's break this down step by step to solve both the quadratic equation and the inequality.
### 1. Solve the Quadratic Equation [tex]\( 1.1x^2 - x - 12 = 0 \)[/tex]
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. Here, [tex]\( a = 1.1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -12 \)[/tex].
The solutions for [tex]\( x \)[/tex] can be found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's first calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-1)^2 - 4 \cdot 1.1 \cdot (-12) \][/tex]
[tex]\[ \Delta = 1 + 52.8 \][/tex]
[tex]\[ \Delta = 53.8 \][/tex]
Next, we calculate the roots using the quadratic formula:
[tex]\[ x = \frac{-(-1) \pm \sqrt{53.8}}{2 \cdot 1.1} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{53.8}}{2.2} \][/tex]
So, we have:
[tex]\[ x_1 = \frac{1 + \sqrt{53.8}}{2.2} \][/tex]
[tex]\[ x_2 = \frac{1 - \sqrt{53.8}}{2.2} \][/tex]
### 2. Solve the Inequality [tex]\( (2x - 3)(x^2 + 1) < 0 \)[/tex]
To analyze this inequality, let's study the product:
1. [tex]\( x^2 + 1 \)[/tex] is always positive for all real [tex]\( x \)[/tex] because it's a sum of squares.
2. Therefore, [tex]\( (2x - 3)(x^2 + 1) < 0 \)[/tex] will hold true when [tex]\( 2x - 3 < 0 \)[/tex].
Solving the inequality [tex]\( 2x - 3 < 0 \)[/tex]:
[tex]\[ 2x - 3 < 0 \][/tex]
[tex]\[ 2x < 3 \][/tex]
[tex]\[ x < \frac{3}{2} \][/tex]
[tex]\[ x < 1.5 \][/tex]
### Summary of Solutions
- The solutions to the quadratic equation [tex]\( 1.1x^2 - x - 12 = 0 \)[/tex] are:
[tex]\[ x_1 = \frac{1 + \sqrt{53.8}}{2.2}, \quad x_2 = \frac{1 - \sqrt{53.8}}{2.2} \][/tex]
- The solution to the inequality [tex]\( (2x - 3)(x^2 + 1) < 0 \)[/tex] is:
[tex]\[ x < 1.5 \][/tex]
These are the required solutions for the quadratic equation and the inequality.
### 1. Solve the Quadratic Equation [tex]\( 1.1x^2 - x - 12 = 0 \)[/tex]
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. Here, [tex]\( a = 1.1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -12 \)[/tex].
The solutions for [tex]\( x \)[/tex] can be found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's first calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-1)^2 - 4 \cdot 1.1 \cdot (-12) \][/tex]
[tex]\[ \Delta = 1 + 52.8 \][/tex]
[tex]\[ \Delta = 53.8 \][/tex]
Next, we calculate the roots using the quadratic formula:
[tex]\[ x = \frac{-(-1) \pm \sqrt{53.8}}{2 \cdot 1.1} \][/tex]
[tex]\[ x = \frac{1 \pm \sqrt{53.8}}{2.2} \][/tex]
So, we have:
[tex]\[ x_1 = \frac{1 + \sqrt{53.8}}{2.2} \][/tex]
[tex]\[ x_2 = \frac{1 - \sqrt{53.8}}{2.2} \][/tex]
### 2. Solve the Inequality [tex]\( (2x - 3)(x^2 + 1) < 0 \)[/tex]
To analyze this inequality, let's study the product:
1. [tex]\( x^2 + 1 \)[/tex] is always positive for all real [tex]\( x \)[/tex] because it's a sum of squares.
2. Therefore, [tex]\( (2x - 3)(x^2 + 1) < 0 \)[/tex] will hold true when [tex]\( 2x - 3 < 0 \)[/tex].
Solving the inequality [tex]\( 2x - 3 < 0 \)[/tex]:
[tex]\[ 2x - 3 < 0 \][/tex]
[tex]\[ 2x < 3 \][/tex]
[tex]\[ x < \frac{3}{2} \][/tex]
[tex]\[ x < 1.5 \][/tex]
### Summary of Solutions
- The solutions to the quadratic equation [tex]\( 1.1x^2 - x - 12 = 0 \)[/tex] are:
[tex]\[ x_1 = \frac{1 + \sqrt{53.8}}{2.2}, \quad x_2 = \frac{1 - \sqrt{53.8}}{2.2} \][/tex]
- The solution to the inequality [tex]\( (2x - 3)(x^2 + 1) < 0 \)[/tex] is:
[tex]\[ x < 1.5 \][/tex]
These are the required solutions for the quadratic equation and the inequality.
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. IDNLearn.com is your go-to source for dependable answers. Thank you for visiting, and we hope to assist you again.