Join IDNLearn.com today and start getting the answers you've been searching for. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
The Ideal Gas Law is expressed with the formula:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure of the gas,
- [tex]\( V \)[/tex] is the volume of the gas,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the gas constant, and
- [tex]\( T \)[/tex] is the temperature of the gas.
Given Data:
- Volume ([tex]\( V \)[/tex]) = 0.0225 m³
- Temperature ([tex]\( T \)[/tex]) = 275 K
- Pressure ([tex]\( P \)[/tex]) = 105 N/m²
- Gas constant ([tex]\( R \)[/tex]) = 8.314 J/(mol·K)
To find the number of moles ([tex]\( n \)[/tex]), we need to rearrange the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Step-by-Step Solution:
1. Identify known quantities:
[tex]\[ V = 0.0225 \text{ m}^3 \\ T = 275 \text{ K} \\ P = 105 \text{ N/m}^2 \\ R = 8.314 \text{ J/(mol·K)} \][/tex]
2. Substitute these values into the equation:
[tex]\[ n = \frac{105 \text{ N/m}^2 \times 0.0225 \text{ m}^3}{8.314 \text{ J/(mol·K)} \times 275 \text{ K}} \][/tex]
3. Calculate the numerator:
[tex]\[ 105 \text{ N/m}^2 \times 0.0225 \text{ m}^3 = 2.3625 \text{ N·m} = 2.3625 \text{ J} \quad (\text{since } 1 \text{ N·m} = 1 \text{ J}) \][/tex]
4. Calculate the denominator:
[tex]\[ 8.314 \text{ J/(mol·K)} \times 275 \text{ K} = 2286.35 \text{ J/mol} \][/tex]
5. Divide the numerator by the denominator:
[tex]\[ n = \frac{2.3625 \text{ J}}{2286.35 \text{ J/mol}} = 0.001033306361668161 \text{ mol} \][/tex]
So, the number of moles ([tex]\( n \)[/tex]) of the gas is approximately [tex]\( 0.001033 \)[/tex] mol.
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure of the gas,
- [tex]\( V \)[/tex] is the volume of the gas,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the gas constant, and
- [tex]\( T \)[/tex] is the temperature of the gas.
Given Data:
- Volume ([tex]\( V \)[/tex]) = 0.0225 m³
- Temperature ([tex]\( T \)[/tex]) = 275 K
- Pressure ([tex]\( P \)[/tex]) = 105 N/m²
- Gas constant ([tex]\( R \)[/tex]) = 8.314 J/(mol·K)
To find the number of moles ([tex]\( n \)[/tex]), we need to rearrange the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Step-by-Step Solution:
1. Identify known quantities:
[tex]\[ V = 0.0225 \text{ m}^3 \\ T = 275 \text{ K} \\ P = 105 \text{ N/m}^2 \\ R = 8.314 \text{ J/(mol·K)} \][/tex]
2. Substitute these values into the equation:
[tex]\[ n = \frac{105 \text{ N/m}^2 \times 0.0225 \text{ m}^3}{8.314 \text{ J/(mol·K)} \times 275 \text{ K}} \][/tex]
3. Calculate the numerator:
[tex]\[ 105 \text{ N/m}^2 \times 0.0225 \text{ m}^3 = 2.3625 \text{ N·m} = 2.3625 \text{ J} \quad (\text{since } 1 \text{ N·m} = 1 \text{ J}) \][/tex]
4. Calculate the denominator:
[tex]\[ 8.314 \text{ J/(mol·K)} \times 275 \text{ K} = 2286.35 \text{ J/mol} \][/tex]
5. Divide the numerator by the denominator:
[tex]\[ n = \frac{2.3625 \text{ J}}{2286.35 \text{ J/mol}} = 0.001033306361668161 \text{ mol} \][/tex]
So, the number of moles ([tex]\( n \)[/tex]) of the gas is approximately [tex]\( 0.001033 \)[/tex] mol.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.