Join IDNLearn.com today and start getting the answers you've been searching for. Our platform provides accurate, detailed responses to help you navigate any topic with ease.

The universe has laws that the volume \([tex] V \text{ (m}^3) \[/tex]\) of a given mass of an ideal gas varies directly with its absolute temperature \([tex] T \text{ (K)} \[/tex]\) and inversely with its pressure [tex]\([tex] P \text{ (Pa)} \[/tex]\)[/tex].

Given: A certain gas at an absolute temperature of 275 K and a pressure of 105 N/m² has a volume of 0.0225 m³.

Find the formula for this condition.

The Ideal Gas Law is given by:
[tex]\[
PV = nRT
\][/tex]

Where:
- [tex]\( P \)[/tex] is the pressure
- [tex]\( V \)[/tex] is the volume
- [tex]\( n \)[/tex] is the number of moles
- [tex]\( R \)[/tex] is the ideal gas constant
- [tex]\( T \)[/tex] is the temperature in Kelvin


Sagot :

The Ideal Gas Law is expressed with the formula:

[tex]\[ PV = nRT \][/tex]

where:
- [tex]\( P \)[/tex] is the pressure of the gas,
- [tex]\( V \)[/tex] is the volume of the gas,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the gas constant, and
- [tex]\( T \)[/tex] is the temperature of the gas.

Given Data:
- Volume ([tex]\( V \)[/tex]) = 0.0225 m³
- Temperature ([tex]\( T \)[/tex]) = 275 K
- Pressure ([tex]\( P \)[/tex]) = 105 N/m²
- Gas constant ([tex]\( R \)[/tex]) = 8.314 J/(mol·K)

To find the number of moles ([tex]\( n \)[/tex]), we need to rearrange the Ideal Gas Law to solve for [tex]\( n \)[/tex]:

[tex]\[ n = \frac{PV}{RT} \][/tex]

Step-by-Step Solution:
1. Identify known quantities:
[tex]\[ V = 0.0225 \text{ m}^3 \\ T = 275 \text{ K} \\ P = 105 \text{ N/m}^2 \\ R = 8.314 \text{ J/(mol·K)} \][/tex]

2. Substitute these values into the equation:
[tex]\[ n = \frac{105 \text{ N/m}^2 \times 0.0225 \text{ m}^3}{8.314 \text{ J/(mol·K)} \times 275 \text{ K}} \][/tex]

3. Calculate the numerator:
[tex]\[ 105 \text{ N/m}^2 \times 0.0225 \text{ m}^3 = 2.3625 \text{ N·m} = 2.3625 \text{ J} \quad (\text{since } 1 \text{ N·m} = 1 \text{ J}) \][/tex]

4. Calculate the denominator:
[tex]\[ 8.314 \text{ J/(mol·K)} \times 275 \text{ K} = 2286.35 \text{ J/mol} \][/tex]

5. Divide the numerator by the denominator:
[tex]\[ n = \frac{2.3625 \text{ J}}{2286.35 \text{ J/mol}} = 0.001033306361668161 \text{ mol} \][/tex]

So, the number of moles ([tex]\( n \)[/tex]) of the gas is approximately [tex]\( 0.001033 \)[/tex] mol.